IMPER: Characterization of the Wind Field over a Large Wind Turbine Rotor
Final report

Schmidt Paulsen, Uwe; Wagner, Rozenn

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
IMPACT: Characterization of the Wind Field over a Large Wind Turbine Rotor - Final report

Uwe Schmidt Paulsen, Rozenn Wagner

DTU Wind Energy Report E-0002(EN)
January 2012
Abstract:

A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and hereby experience effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub height, an oversimplification of the wind energy power over the rotor disk area is carried out.

The project comprised a number of innovative and coordinated measurements on a full scale turbine with remote sensing technology and simulations on a 500 kW wind turbine for the effects of wind field characterization.

The objective with the present report is to give a short overview of the different experiments carried out and results obtained within the final phase of this project.
Contents

Preface .................................................. 5

1 Introduction .......................................... 6

2 Objectives and approach .......................... 7
  2.1 Objectives .................................... 7
  2.2 Approach ..................................... 7

3 Wind characterisation over a large rotor disk area- few retrospective findings .... 8
  3.1 References .................................. 14

4 Description of the experimental facility ...... 15
  4.1 Site .......................................... 15
  4.2 Wind Turbine Description .................... 18
  4.3 Grid connection ................................ 20
  4.4 Instrumentation ................................ 21
  4.5 Blades ...................................... 21
  4.6 Rotor and drive train ......................... 22
  4.7 Spinner ...................................... 23
  4.8 5-hole pitot .................................. 23
  4.9 Lidars ....................................... 24
  4.10 Turbine tower ................................ 25
  4.11 Meteorological mast ......................... 26
  4.12 Data Acquisition ............................ 27
  4.13 Calibration and measured signals ........ 28
  4.14 Field experiences ........................... 33

5 Extended power performance measurements approach ............................................. 34
  5.1 Methodology .................................. 34
  5.2 Selection of data .............................. 35
  5.3 Loads and performance analysis ............ 35
  5.4 Results from post processing time series .... 37
  5.4.1 Wind direction difference over the rotor disk area 37
  5.5 Results from analysing MySQL Nordtank database ........................................... 40
  5.5.1 Turbulence .................................. 41
  5.5.2 Flow towards and over the rotor disk area ..................................................... 41
  5.5.3 Vertical Shear ................................ 46
  5.5.4 Horizontal wind direction differences and Yaw error .................................... 49
  5.5.5 Vertical shear effect and rotor performance .................................................. 51
  5.6 Spectral analysis ................................ 57
  5.7 References .................................... 61

6 Simulations on the 500 kW wind turbine ...................................................................... 62
  6.1 Simulation cases selection ................. 63
  6.1.1 Set up of HAWC2 .......................... 63
  6.2 Results and comparison with experiments ......................................................... 63
  6.3 References .................................... 81

7 Equivalent wind speed power curve for the Nordtank turbine .................................. 82
  7.1 Data ............................................. 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 Method</td>
<td>82</td>
</tr>
<tr>
<td>7.3 Results</td>
<td>83</td>
</tr>
<tr>
<td>7.4 Conclusions</td>
<td>86</td>
</tr>
<tr>
<td>8 Speed profile evolution from the shore to the mast</td>
<td>87</td>
</tr>
<tr>
<td>8.1 Description of the measurement campaign</td>
<td>87</td>
</tr>
<tr>
<td>8.2 Verification Zephir unit 2 at mast V27</td>
<td>89</td>
</tr>
<tr>
<td>8.3 Comparison of the profiles</td>
<td>92</td>
</tr>
<tr>
<td>8.4 References</td>
<td>97</td>
</tr>
<tr>
<td>8.5 Conclusions</td>
<td>98</td>
</tr>
<tr>
<td>8.6 Outlook</td>
<td>98</td>
</tr>
<tr>
<td>9 Acknowledgement</td>
<td>99</td>
</tr>
<tr>
<td>Appendixes</td>
<td>100</td>
</tr>
<tr>
<td>Analysis results from post processing</td>
<td>100</td>
</tr>
<tr>
<td>LIDAR results</td>
<td>329</td>
</tr>
<tr>
<td>List of IMPER output</td>
<td>331</td>
</tr>
<tr>
<td>Overview of sensor and transmitter</td>
<td>332</td>
</tr>
</tbody>
</table>
Preface

This report is the final publishable report in the project “Improved Performance Measurements; Characterization of the Wind Field over a large wind turbine rotor”, funded by the Danish Energy Research Programme EFP-2006 under contract Journal nr:33032-0106. The project (under acronym IMPER) was carried out in the period from March 2006 to Dec 2009 in cooperation with Risø DTU, Siemens Wind Power and Vestas Wind Systems. In 2010 IMPER was revised and continued by Risø DTU until Dec 2011.

The project comprised a number of innovative and coordinated measurements on a full scale turbine with remote sensing technology and simulations on a 500 kW wind turbine for the effects of wind field characterization.

The objective with the present report is to give a short overview of the different experiments carried out and results obtained within the final phase of the project.

Articles, reports and works carried out in the course of the project are listed in the present report.

Uwe Schmidt Paulsen

DTU, February 2012
1 Introduction

The use of a single hub-height mounted anemometer is already today considered inadequate for characterizing the wind conditions a huge turbine rotor encounters as it spirals through a large portion of the atmospheric boundary layer. As future wind turbines become even bigger, performance results based on a single hub height measurement will result in even bigger uncertainties and faulty estimates. Measurements at hub height require an assumption of the wind profile as a function of height above ground. But this method fails to describe the incoming flow field and the influence of parameters such as turbulence intensity, wind shear, and wind direction changes on the turbine performance. The performance of contemporary, and forthcoming even larger turbines requires development of new “distributed” measurement methods in the rotor plane to replace the hitherto use of a single hub-height wind measurement. This again requires the use of remote sensing instrumentation in the form of LIDAR and SODAR measurements in order to acquire wind measurements over the whole rotor profile, free of met tower influence effects and the difficulties and expenses associated with the met tower installation.

The following graphs illustrate the essentials on the subject. A time trace shows the mean wind speeds at the National Test Site at Høvsøre, collected on March 28, 2007:

The wind conditions are stable during night and the cup anemometers in the different heights show a fine layered wind, in contrary to the situation at noon. Now, the wind
is unstable or near neutral and has a well-mixed, turbulent structure. A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and hereby experience the above mentioned effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub height, an oversimplification of the wind energy power over the rotor disk area is carried out.

2 Objectives and approach

2.1 Objectives

The objective of this project is to improve on the current practice in performance evaluation to use a single point measurement of wind speed as a representative measurement for the entire rotor disk area. This will be achieved through:

An evaluation of the influence of wind field characteristics (turbulence, wind shear, wind veer) which influence the performance of large wind turbines:

- Developing a new method to characterize the performance of large wind turbines in flat terrain, taking into account the wind field measurement covering the complete rotor area.
- Creating the background to improve the accuracy in wind potential measurement methods.
- Contributing to further development and use of remote sensing methods in wind energy in order to improve the energy yield and reduce the financial risk.
- Extending the above method for performance measurements from flat to slightly complex terrain.

2.2 Approach

The complexity of the problem and the use of cup anemometers, in particular when extending from analyzing power curves in flat over to complex terrain is found to require a condensed literature survey on previous works on the use of cup anemometers and how to derive the power curve. Recommendations and findings are found in Chapter 3.

Much work and activities has been performed within IMPER, in particular the work carried out in [3.1], and the PhD thesis [3.2] on the characterization of the wind field effects on wind turbine rotors and the use of remote sensing. Findings from these investigations are to some extend been experimentally duplicated in order to provide data with statistical confidence.

A differentiated approach to analyze the rotor power in further details has been re-introduced here and applied to the 500 kW wind turbine in Chapter 5. The site and experimental conditions are described in Chapter 4. Under these conditions data are analyzed to embrace power curve and loads analysis on the rotor.

A wind turbine and wind model has been implemented to quantify the effects of the wind characterisation, as shown in Chapter 6.

Further the use of remote sensing is used to confirm earlier studies in IMPER are made in Chapters 8-8.3, and conclusions are made for an outlook on further activities in this field.
3 Wind characterisation over a large rotor disk area- few retrospective findings

Condensed findings are performed from the following references, which are by no means exhaustive. The amount of literature and the diverseness of the different topics addressed in this field make it difficult in providing a full picture to the topic.

The report on “Accuracy of power curve measurements” from 1986 provides a good introduction to the diversity of challenges concerned with deriving a power curve[3.3], in particular under clause ‘precise’. Some themes on reaching comparability, is on how to interpret the wind measurements with a wind turbine in a landscape and a measurement setup, how to utilize measurement procedures that makes sense, and recommendations how to provide ‘good’ estimates.

Previous results from a study on cup anemometry in “Wind Turbine Power Performance Verification in Complex Terrain and Wind Farms”[3.4] are used: “The vector scalar wind speed definition in relation to power curve measurements is based on the assumption, that the important wind parameters are all the wind components $U_x$, $U_y$, $U_z$. The measured average wind speed becomes: The vector scalar wind speed definition in relation to power curve measurements is based on the assumption, that the important wind parameters are all the wind components $U_x$, $U_y$, $U_z$. The measured average wind speed becomes: $U_{\text{vector}} = \frac{1}{T} \int_0^T \sqrt{U_x^2(t) + U_y^2(t) + U_z^2(t)} dt = \sqrt{U^2 + W^2}$

The horizontal wind speed definition is based on the assumption, that the important wind parameters are the horizontal components. The measured average wind speed is therefore:

$U_{\text{hori}} = \frac{1}{T} \int_0^T \sqrt{U_x^2(t) + U_y^2(t)} dt = U$

The longitudinal wind speed definition is based on the assumption that the wind turbine only responds to average longitudinal (and horizontal) wind, in which only the components in the longitudinal direction $\varphi$ are taken into account:

$U_{\text{long}} = \frac{1}{T} \int_0^T \sqrt{U_x^2(t) + U_y^2(t)} \cos(Ar \tan(U_x / U_y) - \varphi) dt$

“‘energy equivalent’ wind speed, $U$, is the equivalent non-turbulent flow speed that yields the same energy flux through a unit-area perpendicular to the mean flow direction as the real flow” (Frandsen, cited in [3.4])

The power in the wind per unit swept area is:

$P = q \cdot (U + u) = \frac{1}{2} \rho \cdot (U^2 + \nu^2 + w^2) \cdot (U + u)$

$= \frac{1}{2} \rho \cdot (U^2 + 3U^2\nu + U(3\nu^2 + \nu^2 + w^2) + \nu(u^2 + \nu^2 + w^2))$

And where $q$ is the kinetic energy

From the formula of the power, the energy equivalent wind speed can be ex-pressed as:

$U_{\text{energy}} = \left(\frac{U + u}{((U + u)^2 + \nu^2 + w^2) \cdot (U + u)}\right)^{1/3}$
Since \( \bar{u} = 0 \Rightarrow \bar{u}^2 = 0 \), and since \( \bar{u}(\bar{u}^2 + \bar{v}^2 + \bar{w}^2) \) is one order of magnitude less than the remaining terms, and therefore set to zero, the expression reduces to:

\[
P = \frac{1}{2} \rho \left( U^3 + 3 \bar{U}^2 \bar{v} + \bar{U} \bar{w} \right) \frac{1}{2} \rho \left( 1 + \frac{w^2}{U^2} + \frac{w^2}{U^2} \right).
\]

With

\[
\sigma_v^2 = \bar{v}^2, \quad \sigma_w^2 = \bar{w}^2 \quad \text{and} \quad \sigma_u^2 = \bar{u}^2
\]

\( P \) turns out to:

\[
P = \frac{1}{2} \rho \cdot U^3 \left( 1 + 3 \frac{\sigma_v^2}{U^2} + \frac{\sigma_w^2}{U^2} + \frac{\sigma_u^2}{U^2} \right).
\]

With the usual definition of turbulence intensity \( T_i \), and depending if to adopt variations in \( v \) and \( w \) directions the expression is:

\[
P \propto (1 + 3 T_i^2) \text{(mainly turbulence towards turbine)} \quad \text{or} \quad P \propto (1 + 5 T_i^2) \text{(isotropic turbulence)}
\]

In the same report, following conclusions are made:

“Cup anemometers show systematic turbulence dependent differences in field comparisons

- Neither the RISØ nor the Thies cup anemometer has any “ideal” angular characteristics for “Horizontal” or “Vector” instruments
- The difference in measured wind speed between the two definitions “vector” and “horizontal” is quite low (about 1% at 20% turbulence), and is not the explanation to the high differences shown in the field comparisons
- Angular response is not enough to explain the differences of the cup-anemometers in field comparisons.
- Dynamic overspeeding is a substantial factor that must be taken into account
- Dynamic overspeeding of cup-anemometers is more complex than previously thought. For an adequate analysis, a non-dimensional torque curve must be provided
- The RISØ cup anemometer seems to have a little negative overspeeding at 10% turbulence, but increasing positive overspeeding at higher turbulence intensities.
- The Thies cup-anemometer seems to have substantially higher overspeeding than the RISØ cup anemometer, which must be an important part of the explanation of the high differences in field comparisons
- Cup anemometers should, apart from field comparisons, be classified according to a classification system, and based on an analysis of their friction dependency, angular response and dynamic overspeeding effects under well-defined ranges of external climatic conditions. A classification system is proposed in the CLASSCUP project
- Such a classification system should be widely adopted in the wind energy community, and it should be used to estimate operational uncertainties in power performance measurements (uncertainty \( uV^2 \), in the power performance measurement standard IEC 61400-121)
- The definition of the measured wind speed should with respect to inclined flow be based on the following considerations:
  1. Influence of flow inclination (sloped terrain and without turbulence)
  2. Influence of turbulence on the wind turbine and the wind speed sensor ..”

In the same report, code and experimental validation of the power reduction from yaw misalignment is shown in Figure 1. The report concludes:” The reduction of
power with the yaw angle is almost the same as for inclined airflow. The difference is the wind shear, and the effect is very low. For the present analysis we can make the assumption that misalignment of the flow relative to the rotor axis is cosine related for yaw, tilt and slope angles. Under this assumption, it is possible to make some simple calculations of the consequences of different ways of performing performance measurements in different kinds of terrain.

Following these arguments, a coordinate on the power curve should be \( U \cos(\text{angle}^2)^{1/3} \cdot P \cos(\text{angle}^2) \), where angle is a term originating from i) flow inclination, ii) rotor tilt angle or/and iii) yaw error. The relation has been elaborated on a set of data and results are shown in Figure 2. “For a defined “ideal site”, as described in IEC 61400-12, Ref. 1, the maximum average slope is 3°. Including the influence of a tilting angle of 5°, this leads to AEP differences of -0.95% and -0.70% differences for the vector scalar and horizontal definitions, respectively. Realistically, the flow might at an “ideal site” be 5°, which leads to AEP differences of -1.8% and -1.1%, respectively. At these slope angles, the verification of performance seems to give small problems”.

Figure 1 Yaw error effect on the power curve

Figure 2 Simulation of different degrees of inclined flow.
On the turbulence effects on cup anemometers the report says: “Cup anemometers are influenced by turbulence in two ways; overspeeding and angular characteristics. Overspeeding might increase the reading by several percent, as has been shown earlier, but in the present study it is not taken into account. It could be argued that the overspeeding in flat and sloped terrain cancels out in when AEP from the power curves are subtracted.” On the indirect effects of turbulence effects on the cup anemometer it is stated:

“The turbulence changes the flow inclination to the cup anemometer, and over a period of 10 minutes, changes the signal, except if it has ideal characteristics for the defined measured wind speed. If a cup anemometer has flat angular characteristics and the defined wind speed is the vector scalar wind speed, then it has no dependency on turbulence.”

From this study and the example for the Risø cup anemometer response in Figure 3 it is clear that cup anemometers are sensitive to turbulence through altering the local flow conditions for the cup and thereby changes the cup response with a shape in the proximity of +15 degrees close to a $\cos^2$ relationship.

![Figure 3: Angular response characteristics of Risø cup anemometer with horizontal wind speed definition, $\sigma_u:\sigma_v:\sigma_w \approx 1:0.8:0.5$](image)

A study on inclined flow effects on the power performance has been made by means of a nacelle anemometer (note: assumption is here Thies type) and reported [3.5], concluding with: “In a lot of cases the power curve based on the nacelle anemometer is consistent with the met mast measured power curve in terms of the annual energy production. Typical uncertainties of power curve measurements according to the IEC standard are 5-8 % in flat terrain and 6-12 % in complex terrain (inclusive site calibration with two masts). The differences found between the AEP from the nacelle and the AEP from mast measurements were in the range of only 1 % in moderately complex terrain.

In conclusion a change of the AEP is expected to happen in the range of 6%(flat terrain) to 10%(moderate complex terrain), which again is surrounded with uncertainty on the inherited influences from the cup anemometers on flow angle and turbulence.
Wind shear is a main driver in power performance measurements. As pointed out [POWASS] the energy flux $P$ or turbulent kinetic energy (TKE) over a rotor area depends on the shear factor, as shown in Figure 4.

![Figure 4 Energy flux vs. shear factor](image)

**Figure 4 Energy flux vs. shear factor**

In [3.6] the empirical knowledge of turbulent wind variations are studied by means of looking at the main contributions from the wind variations. It is shown, that the flapwise load under given design conditions of constant rpm and twist is driven by the fluctuating wind component $u$ along with the average wind $U$. In essence the relative variation of the flapwise loading ($\sigma_{My}/My$) under these assumptions is proportional to turbulence intensity $Ti$ ($\sigma_u/U$). In other words the aerodynamic loading of the rotor is a footprint of the variability of the wind. A similar argument is used in [3.7] to analyze spectra performed in a rotating frame of reference. In the paper it is shown that wind shear is clearly visible. This issue is followed up in the present analysis and has been an argument to apply the chosen experimental method.

There are quite a number of contributions to the scope of IMPER, and only few to be mentioned here: studies on the influence of atmospheric turbulence [3.8, 3.9, 3.10, 3.11], in complex terrain [3.12], an explanation of the physics for the origin of wind, and seasonal wind variations at the Danish National Test Site [3.13]. A summary of practical experience has been found in a description on field measurements carried out at about 126 different places in USA with SODARs [3.14]. In the paper, routine analysis includes plotting mean profiles by wind direction sector and by hour of day and fit data with a power law, screening of transient events such as front passages, low-level jets and circulation flow (mountain/valley, sea breeze) and is shown in Table 1.

**Table 1 Factors affecting the shape of the wind profile, from [14]**

<table>
<thead>
<tr>
<th>Meteorological:</th>
<th>Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability (hour, season)</td>
<td>Slope steepness, aspect</td>
</tr>
<tr>
<td>Low-level jets</td>
<td>Upslope vs. downslope</td>
</tr>
<tr>
<td>Frontal passage</td>
<td>Vegetation (roughness, stability)</td>
</tr>
<tr>
<td>Local circulations (mountain/valley, sea breeze, etc.)</td>
<td></td>
</tr>
</tbody>
</table>
The authors suggest assessing / detecting the wind profiles with the following measures[3.14]:

- Shear—change in horizontal wind speed with height
- Friction velocity ($u^*$), roughness length ($z_0$), displacement height
- Directional shear (degrees of rotation)
- Directional shear (along- and cross-wind component shear)
- Flow inclination—vertical/horizontal
- Turbulence Intensity

The crosses indicate we will look into the data at the Risø Campus for the effects on power performance. In the paper, effort is made on to stress that wind profiles represented by a point measurement is not adequate for the power in the entire rotor disk, and a weighting by means of $\sum \rho A_i \cos^2(\Delta \theta) U_i^3$ as suggested [3.14]. Here $P_i$ is the power calculated for the $i$th layer, $A_i$ is the area of the rotor disk and $\Delta \theta$ the difference between wind directions of layer relative to hub height wind direction.

From the investigation, following results seem in general valuable:

**Inflow angle by hour of day**
Temporal variations due to circulation effect in particular in mountainous areas (upslope/down slope pattern) with slopes as much as 10 degrees (3-4 % on power reduction as per $\cos^2(10^\circ)$).

**Directional shear by hour of day**
A variation of the wind direction by clockwise 0.2-0.5 Degrees/m in the rotor plane in particular early morning hours is observed, and with effects more pronounced at low wind speeds (cases above 5 m/s have also been observed), see Figure 5. Applying a $\cos^2$ method to these findings, 2-3% power loss is expected.

![Figure 5 Wind direction differences (veer) between 40m and 120m. From[3.14]](image-url)
Time varying horizontal wind shear
Temporal variations are observed on the mean wind profiles with positive and negative shear, changing the integrated power typically to a 5% loss.

Directional shear
A height –time representation of wind direction has been presented in the paper showing results from a site with thermal circulation within the rotor area. Shifts occur during the day, moving the profiles down towards mid-day.

Some closing words are made here on the rotor conditions, where factors like roughness of the rotor blades (including tip) affect the aerodynamic performance as shown in [3.15], and the condition of other aerodynamic devices such as vortex generators and stall strips.

The wind turbine in use is described in 4.2 and the aerodynamic devices are known to be in good conditions. However, blades have undergone natural exposure to wind and pollutants, and hereby aggregated roughness built up. We have here ignored to quantify the equivalent roughness they are as shown minor in effect.

![Figure 6 Effect of roughness for wind turbine power performance, a: power curves based on two measured roughness conditions, and e: flow stages around profile](image)

3.1 References
3.2. Wagner R. Accounting for the speed shear in wind turbine power performance measurement, Risø-PhD-58(EN), 155pp, 2010
3.4. Pedersen, T.F. et al. Wind Turbine Power Performance Verification in Complex Terrain and Wind Farms Risø R-1330
3.6. Jensen, N.O., and Frandsen, S. Atmospheric turbulence structure in relation to wind generator design, in EWEA Proceedings of wind energy system Amsterdam 1978, paper C1
4 Description of the experimental facility

4.1 Site

The Wind turbine is geographically located at the Risø Campus, about 6 km North of Roskilde as shown on Figure 7. The wind turbine is placed on the foundation no 4, in a rather gentle sloping terrain towards the area ‘Bløden’ on the west side of the Roskilde firth. The free undisturbed inflow is from the dominant westerly wind direction.

Figure 8 shows an overview of the site with position of wind turbine, and meteorological mast(283 Deg).

Figure 9 shows the ambient turbulence intensity at the met mast. The influence of the open water is shown as a low turbulence intensity area with about 8-10 % turbulence intensity, and increases towards the south and north to about 20-30% in intensity.
Figure 7: Location of turbine

Wind Turbine
55°41'04.01 N
12°05'48.05E
Figure 8 Top: Map of DTU, Campus Risø and wind turbine (mark), and met mast-turbine direction (283 Deg), from [4.15]. Below: a westerly view from the nacelle.
4.2 Wind Turbine Description
The test wind turbine, which is located at Risø Campus, Roskilde, is a traditional Danish three-bladed stall regulated Nordtank, NTK 500/41 wind turbine – see specifications in Table 2. Figures in brackets reflect results from post survey on turbine specs. The turbine is primarily used for energy production and tests and it is serviced on commercial conditions.
Figure 10 Photo of NTK500/41 wind turbine

Table 2: Nordtank NTK 500/41 specifications.

<table>
<thead>
<tr>
<th>Identification No.</th>
<th>92-500</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rotor</strong></td>
<td></td>
</tr>
<tr>
<td>Rotor Diameter</td>
<td>41.1m</td>
</tr>
<tr>
<td>Swept area</td>
<td>1320 m²</td>
</tr>
<tr>
<td>Rotational Speed:</td>
<td>27.1 rpm</td>
</tr>
<tr>
<td>Measured tip angle:</td>
<td>-0.2°±0.2°</td>
</tr>
<tr>
<td>Tilt</td>
<td>2°</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>Coning</td>
<td>0°</td>
</tr>
</tbody>
</table>

**Blades**
- Blade type: LM 19.1
- Blade profile[s]: NACA 63-4xx & NACA FF-W3, equipped with vortex generators.
- Blade length: 19.04 m
- Blade chord: 0.265 – 1.630 m
- Blade twist: 0.02 – 20.00 degrees
- Air brakes: Pivotal blade tips, operated in FS-mode

**Drive train**
- Mechanical brake: High speed shaft, operated in FS-mode
- Power regulation: Passive aerodynamic stall
- Gearbox: Flender; ratio 1:55.35
- Generator: Siemens 500 kW, 4 poles, 690 V

**Tower**
- Type: Conical steel tube, h=33.8 m
- Hub height: 36.0 m

**Masses:**
- Blade weight: 1960 kg (2249 kg incl. Extender and bolts)
- Rotor incl. hub: 9030 kg (9846 kg)
- Tower head mass: 24430 kg (25246kg)
- Tower mass: 22500 kg

The turbine was installed in 1992 with a 37 m diameter rotor, which in 1994 was substituted with a 41 m diameter rotor in combination with a rotor speed reduction to limit the power output. The wind turbine has been subjected to tests, modifications and investigations during 1992-1999 with a short list of references [5.2, 5.3, 5.4, 5.6, 5.6]. There have been load measurements on the wind turbine drive train [5.7], and load simulations on a 600 kW gearbox design similar to the present wind turbine gearbox [5.8].

### 4.3 Grid connection
The wind turbine is connected to a local 400 V grid, designed for test of smaller wind turbines. The 400 V is supplied from the public 10 kV grid through a 1000 kVA, 10/0.4 kV transformer that is presently shared between the 500 kW Nordtank wind turbine and a 100 kW Tellus wind turbine.
The Nordtank wind turbine is rated to 690 V, and therefore an additional 800 kVA, 0.4 / 0.69 kV transformer is installed to increase the voltage. The principal electric connection diagram is shown in Figure 11.
A frequency converter system has been designed and implemented allowing the wind turbine to operate at variable grid frequency. This wind turbine operation mode can be switched to from stall regulated mode by means of a by-pass contactor as seen on Figure 11.

4.4 Instrumentation

Presently the experimental facility is instrumented as described in the following:

A meteorological mast is placed 2½ rotor diameters in westerly direction from the wind turbine. The mast is equipped for measurement of wind speed at hub height, wind direction, air temperature, air barometric pressure and air humidity. The installation is made in accordance with the recent IEC recommendations for both power performance [5.10] and structural load measurements [5.11] and [5.12,5.13].

Dedicated instrumentation devices such as the spinner anemometer and the 5-hole pitot system were planned to be implemented on the wind turbine for their potentials in revealing detailed information on the inflow at the rotor disk. Unable to implement them in service the description of the sensors are mentioned.

The structural loads are monitored by strain gauges mounted at the blade root, on the main shaft, at the tower top and at the tower bottom. The instrumented locations are detailed below:

4.5 Blades

The load signals from the reference blade includes bending moments at the blade root, measured by strain gauges mounted on the blade root steel extenders, as shown on Figure 12. The gauge installation enables measurements of both flap-wise and edge-wise bending moments in a rotating reference system.
4.6 Rotor and drive train
The load measurement on the main shaft includes a torque sensor in front and right after the main bearings, and two bending moments at a position behind the hub/main shaft flange – in a rotating reference system, as shown on Figure 13. The gauge location enables measurements of bending moments in two directions, perpendicular to each other in a rotating reference system. The two bending moments combined with the rotor position are used to determine the rotor bending moments in yaw and tilt direction - in a nacelle reference system.

Figure 13: Structural load measurements on the main shaft.

Additionally accelerometers are positioned on the gearbox and on the rear of the nacelle, see Figure 14.
4.7 Spinner
A spinner anemometer has been installed in order to provide detailed information about the interaction between wind flow towards the turbine, and the turbine yaw response and the effect of this difference on the power performance. The instrument is a prototype and has not worked properly in the period. The standard way of deriving the information was used with wind direction from the sonic anemometer at the met mast, and the nacelle position.

4.8 5-hole pitot
In 5.14 the use of a 5-hole pitot system was introduced to derive an aerodynamic power curve and to be able to show differences in vertical as well as horizontal inflow wind. A data acquisition system and a similar 5-hole pitot system see Figure 16, built for the PSO aerial sensors project, was planned here to be used in a similar manner as in [5.15], but it was not finalized to a technically acceptable quality. However, where the spinner anemometer is a dedicated instrument for providing
control of the effects of inflow and nacelle position, the 5-hole pitot tube sensor is dedicated for research of the interaction between inflow and the rotor output (power performance).

Figure 16 Photo of the manufactured 5-hole pitot system for inflow measurements on the rotor blade

4.9 Lidars
Two different LIDAR systems were put in service for IMPER: QinetiQ Zephyr continuous LIDAR system and a pulse LIDAR developed at the University of Stuttgart (SWE) equipped with a optic system for multivariate points scanning option, see Figure 17.

Figure 17 SWE LIDAR(left) and QinetiQ Zephyr LIDAR from Natural Power(right)

The SWE LIDAR was used for wake studies and has been used to profile the upwind conditions at the site. This has been achieved by stopping the turbine, yawing it 180 deg and letting the SWE LIDAR facing the wind and the mast. The wind turbine has been stopped several times during summer and autumn 2011:

- To study wake effect on a neighbouring turbine.
- To carry out profiling of the upstream wind conditions shore-mast
Ground based LIDARs (QinetiQ) Figure 17, right were operating successfully and installed in March 2011, with first one unit installed at the shore, as indicated approximately with a mark in Figure 18 (position 1). A second LIDAR was set in operation at a position 2, and the unit from position 1 was then moved into position 3, after the unit at position 2 was with failure. Details are shown in chapter 8.

![Figure 18 Overview sketch of site with location of LIDARs, and a rough estimation of the wind speed increase at the met mast, by means of potential flow solution of ideal flow approaching a 6 Deg symmetrical wedge.](image)

4.10 Turbine tower

The tower loads includes torque at the tower top and bending moments in two directions at the tower bottom, as shown on Figure 19 in a (fixed) tower reference system.
Figure 19: Structural load measurements on the welded tubular steel tower.

An overview of the signals, the type and sensor conversion principle is given in Table 6 see appendix.

### 4.11 Meteorological mast

The mast was reconfigured for wind speed instrumentation up to 57 magl. A sketch of the instrumentation of the mast and configuration is shown in Figure 20.
4.12 Data Acquisition

A PC-based data acquisition system has been designed to monitor and collect data from the wind turbine sensors – see Figure 21.
The output signals from all sensors are conditioned to the +/- 5 V range. Analogue signals are either continuously varying (strain gauges, temperature…), digital types such as train of pulses (rotational speed, anemometer…) or on/off levels (status signals for brake, blade tips and generator modes). All signals - except outputs from voltage and current transformers - are connected to one of three RISØ P2558A data acquisition units (DAU), each of which provides 16 analogue input channels and 6 general-purpose digital input channels [5.17]. The analogue inputs are converted into 16-bit quantities. Data from all channels are assembled in a binary telegram, each data occupying 16 bits. The telegram is preceded by two synchronization bytes and it is succeeded by two check-sum bytes. The whole telegram is transmitted to the PC over a RS232 serial channel at a rate of 38400 Baud. The sampling rate at the DAUs is set to 35 Hz so new telegrams are created and send 35 times per second per channel. One DAU is installed in the bottom of the wind turbine tower, another in the nacelle and the last one is mounted on the hub – it is rotating and transmitting data over a RF-link. The serial channel from each DAU is connected to the PC over a multi-port serial plug-in board. Even a 35 Hz scan rate is high when considering meteorological conditions, but appropriate for mechanical phenomena, and it is far too slow when studying the impact of the wind turbine on the power grid or mechanical loading in the drive train. The facility allows switching to a fast scanning system for studying mechanical and electrical interactions, but this is not used here. The data acquisition system is build up around a standard desktop PC and connected to the Internet and thereby to DTU from where it can be operated remotely.

To build up complete documentation of the wind turbine behaviour, data acquisition is carried out constantly. Dedicated measurement software DaQWin™ has been developed under LabVIEW©. The data streams received on the serial channels from the DAUs are read, error checked and the measured values are derived from the data telegrams. Data are assembled in 10-minutes time series and statistics such as mean, standard deviation, maximum and minimum values are calculated. The whole time series and the statistics – with a time stamp added – are stored on disk in ASCII-format.

4.13 Calibration and measured signals
The signals are calibrated in comparison with known sources. The strain gauge signals are calibrated by applying known loads on the structure schematically as shown in Figure 22. This is carried out on regular intervals. Details in the calibration procedure are shown in [5.18, 5.19].

There are regularly checks carried out on these signals; these are categorized as to idling at constant rotational speed at low wind speed as in Figure 23 and in Figure 24, and as yawing of the turbine 360 Deg around the horizon with results as in Figure 25 and with applied scaling the result shown in Figure 26.
Figure 22 Rotor load calibration: Flapwise loads (left), Edgewise loads (right)[1]

Figure 23 Idling of rotor at low wind speeds
Figure 24: Wind turbine start sequence at low to medium wind speed

Figure 25: $M_{z\_TT}$ (Blue), MTBEW (Red) and MTBNS (Green) during 360° yaw test performed 28-07-2010

Figure 26: MTBNS (Red), MTBEW (Blue) with physical scaling in kNm vs. nacelle position, in Deg. From yaw test 28-07-2010
The measurement signals with the complete gain and offset values are listed in Table 3.

<table>
<thead>
<tr>
<th>Ind</th>
<th>Signal</th>
<th>Description</th>
<th>Gain</th>
<th>Offset</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Mz_TT</td>
<td>Tower top torsion</td>
<td>-272.087</td>
<td>-121.079</td>
<td>[kNm]</td>
</tr>
<tr>
<td>5</td>
<td>MT_B_EW</td>
<td>Tower Bottom Bending moment, EW</td>
<td>1841.92</td>
<td>155.7</td>
<td>[kNm]</td>
</tr>
<tr>
<td>6</td>
<td>MT_B_NS</td>
<td>Tower Bottom Bending moment, NS</td>
<td>1782.25</td>
<td>31.4</td>
<td>[kNm]</td>
</tr>
<tr>
<td>7</td>
<td>Pe_net</td>
<td>Electrical Net Power</td>
<td>1</td>
<td>0</td>
<td>[kW]</td>
</tr>
<tr>
<td>8</td>
<td>AC_T_x1</td>
<td>Acceleration tower top x</td>
<td>2.212389</td>
<td>-4.77655</td>
<td>[g]</td>
</tr>
<tr>
<td>9</td>
<td>AC_T_y1</td>
<td>Acceleration Tower top y</td>
<td>2.227171</td>
<td>-7.34967</td>
<td>[g]</td>
</tr>
<tr>
<td>10</td>
<td>AC_B_x2</td>
<td>Acceleration Tower bot x</td>
<td>2.207506</td>
<td>-5.85872</td>
<td>[g]</td>
</tr>
<tr>
<td>11</td>
<td>AC_B_y2</td>
<td>Acceleration tower bot y</td>
<td>2.325581</td>
<td>-5.97674</td>
<td>[g]</td>
</tr>
<tr>
<td>12</td>
<td>IO_tip</td>
<td>Status of deployed blade tips</td>
<td>1</td>
<td>0</td>
<td>[-]</td>
</tr>
<tr>
<td>13</td>
<td>IO_brk</td>
<td>Status of brake activated</td>
<td>1</td>
<td>0</td>
<td>[-]</td>
</tr>
<tr>
<td>14</td>
<td>IO_gen</td>
<td>Status of generator on</td>
<td>1</td>
<td>0</td>
<td>[-]</td>
</tr>
<tr>
<td>15</td>
<td>IO_stl</td>
<td>Status of constant speed\variable speed</td>
<td>1</td>
<td>0</td>
<td>[-]</td>
</tr>
<tr>
<td>16</td>
<td>Precip</td>
<td>Precipitation</td>
<td>1</td>
<td>0</td>
<td>[-]</td>
</tr>
<tr>
<td>17</td>
<td>DAU_#0</td>
<td>Status DAU_#0</td>
<td>1</td>
<td>0</td>
<td>[-]</td>
</tr>
<tr>
<td>18*</td>
<td>WDC_Met</td>
<td>WDC_Met</td>
<td>1</td>
<td>0</td>
<td>[V]</td>
</tr>
<tr>
<td>19*</td>
<td>WDS_Met</td>
<td>WDS_Met</td>
<td>1</td>
<td>0</td>
<td>[V]</td>
</tr>
<tr>
<td>20*</td>
<td>WDD_Met</td>
<td>WDD_Met</td>
<td>1</td>
<td>0</td>
<td>[Deg]</td>
</tr>
<tr>
<td>21</td>
<td>Yaw</td>
<td>Nacelle position</td>
<td>1</td>
<td>0</td>
<td>[Deg]</td>
</tr>
<tr>
<td>22</td>
<td>RotAzi</td>
<td>Rotor Azimuth position</td>
<td>1</td>
<td>0</td>
<td>[Deg]</td>
</tr>
<tr>
<td>23</td>
<td>Rot_LLS</td>
<td>Rotor main shaft speed</td>
<td>1</td>
<td>0</td>
<td>[RPM]</td>
</tr>
<tr>
<td>24</td>
<td>Rot_HSP</td>
<td>Generator shaft speed</td>
<td>1</td>
<td>0</td>
<td>[RPM]</td>
</tr>
<tr>
<td>25</td>
<td>WS_Nac</td>
<td>Wins speed, nacelle</td>
<td>1</td>
<td>0</td>
<td>[m/s]</td>
</tr>
<tr>
<td>26</td>
<td>AC_GBx</td>
<td>Acceleration Gearbox forth\back</td>
<td>2.212389</td>
<td>-4.86062</td>
<td>[g]</td>
</tr>
<tr>
<td>27</td>
<td>AC_GBy</td>
<td>Acceleration Gearbox side way</td>
<td>2.267574</td>
<td>-5.38549</td>
<td>[g]</td>
</tr>
<tr>
<td>28</td>
<td>AC_GBz</td>
<td>Acceleration Gearbox up\down</td>
<td>2.257336</td>
<td>-5.17381</td>
<td>[g]</td>
</tr>
<tr>
<td>29</td>
<td>AC_Nacx</td>
<td>Acceleration Nacelle forth\back</td>
<td>2.227171</td>
<td>-4.70379</td>
<td>[g]</td>
</tr>
<tr>
<td>30</td>
<td>AC_Nacy</td>
<td>Acceleration Nacelle sideways</td>
<td>2.217295</td>
<td>-4.19734</td>
<td>[g]</td>
</tr>
<tr>
<td>31</td>
<td>AC_Nacz</td>
<td>Acceleration Nacelle up\down</td>
<td>2.309469</td>
<td>-4.65127</td>
<td>[g]</td>
</tr>
<tr>
<td>32</td>
<td>Q_Shft2</td>
<td>Rotor Shaft torque main rotor#2</td>
<td>-613.648</td>
<td>1809.503</td>
<td>[kNm]</td>
</tr>
<tr>
<td>33*</td>
<td>Q_Shft3</td>
<td>Rotor Shaft torque High speed</td>
<td>11.79288</td>
<td>4.6755</td>
<td>[kNm]</td>
</tr>
<tr>
<td>34</td>
<td>DAU_#14</td>
<td>Status DAU_#14</td>
<td>1</td>
<td>0</td>
<td>[-]</td>
</tr>
<tr>
<td>35</td>
<td>WDR_Nac</td>
<td>Wind Direction reference signal Nacelle</td>
<td>1</td>
<td>0</td>
<td>[V]</td>
</tr>
<tr>
<td>36</td>
<td>WDS_Nac</td>
<td>Wind Direction viper signal Nacelle</td>
<td>1</td>
<td>0</td>
<td>[V]</td>
</tr>
<tr>
<td>37</td>
<td>WDD_Nac</td>
<td>Wind Direction derived Nacelle</td>
<td>1</td>
<td>0</td>
<td>[Deg]</td>
</tr>
<tr>
<td>38</td>
<td>Mx_NR</td>
<td>Main Rotor shaft torque</td>
<td>193.2</td>
<td>-87.8548</td>
<td>[kNm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>My_NR</td>
<td>Main rotor shaft bending 0-180 Degrees</td>
<td>108.2142</td>
<td>32.14643 [kNm]</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Mz_NR</td>
<td>Main rotor shaft bending 90-270 Degrees</td>
<td>-117.738</td>
<td>333.7142 [kNm]</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Mx11</td>
<td>Edgewise bending moment, blade 1</td>
<td>-169.865</td>
<td>79.25246 [kNm]</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>My11</td>
<td>Flapwise bending moment, blade 1</td>
<td>-142.72</td>
<td>-84.0623 [kNm]</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Mx31</td>
<td>Edgewise bending moment, blade 3</td>
<td>-164.488</td>
<td>-97.9374 [kNm]</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>My31</td>
<td>Flapwise bending moment, blade 3</td>
<td>-143.756</td>
<td>25.85806 [kNm]</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Mx21</td>
<td>Edgewise bending moment, blade 2</td>
<td>157.7466</td>
<td>-263.939 [kNm]</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>My21</td>
<td>Flapwise bending moment, blade 2</td>
<td>109.27</td>
<td>50.85978 [kNm]</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>DAU_007</td>
<td>Status DAU_007</td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>SST_nac</td>
<td>Status Sonic nacelle</td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>SSH_nac</td>
<td>Status heat Sonic nacelle</td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>SX_nac</td>
<td>Vector Sonic nacelle x-direction</td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>SY_nac</td>
<td>Vector Sonic nacelle y-direction</td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>SZ_nac</td>
<td>Vector Sonic nacelle z-direction</td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>ST_nac</td>
<td>Air temperature Sonic nacelle</td>
<td>1</td>
<td>0 [Deg C]</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>SHD_nac</td>
<td>Horizontal wind Direction Sonic nacelle</td>
<td>1</td>
<td>0 [Deg]</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>S3S_nac</td>
<td>Speed Sonic nacelle</td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>SVD_nac</td>
<td>Tilt angle Sonic nacelle</td>
<td>1</td>
<td>0 [Deg]</td>
<td></td>
</tr>
<tr>
<td>57*</td>
<td>Sp_dp_Av</td>
<td>Sp_dp_Av</td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>58*</td>
<td>Sp_wy_Av</td>
<td>Sp_wy_Av</td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>59*</td>
<td>Sp_inl_Av</td>
<td>Sp_inl_Av</td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>60*</td>
<td>Sp_spd</td>
<td>Sp_spd</td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>61*</td>
<td>Sp_yw</td>
<td>Sp_yw</td>
<td>1</td>
<td>0 [Deg]</td>
<td></td>
</tr>
<tr>
<td>62*</td>
<td>Sp_incl</td>
<td>Sp_incl</td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>63*</td>
<td>Sp_templ</td>
<td>Sp_templ</td>
<td>1</td>
<td>0 [Deg]</td>
<td></td>
</tr>
<tr>
<td>64*</td>
<td>Spdp_Q</td>
<td>Spdp_Q</td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>65*</td>
<td>Sp_acc_Q</td>
<td>Sp_acc_Q</td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>66*</td>
<td>Spcl_Q</td>
<td>Spcl_Q</td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>67*</td>
<td>Sp_stat</td>
<td>Sp_stat</td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>SST_525</td>
<td>Status <a href="mailto:Sonic@52.5m">Sonic@52.5m</a></td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>SX_525</td>
<td>Speed Vector <a href="mailto:x-direction@52.5m">x-direction@52.5m</a></td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>SY_525</td>
<td>Speed Vector <a href="mailto:y-direction@52.5m">y-direction@52.5m</a></td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>SZ_525</td>
<td>Speed Vector <a href="mailto:z-direction@52.5m">z-direction@52.5m</a></td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>ST_525</td>
<td>Air temperature <a href="mailto:Sonic@52.5m">Sonic@52.5m</a></td>
<td>1</td>
<td>0 [Deg C]</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>S3S_525</td>
<td>Speed <a href="mailto:Sonic@52.5m">Sonic@52.5m</a></td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>SHD_525</td>
<td>Horizontal wind <a href="mailto:Direction@52.5m">Direction@52.5m</a></td>
<td>1</td>
<td>0 [Deg]</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>SVD_525</td>
<td>Tilt angle 52.5m</td>
<td>1</td>
<td>0 [Deg]</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>SST_345</td>
<td>Status <a href="mailto:Sonic@34.5m">Sonic@34.5m</a></td>
<td>1</td>
<td>0 [-]</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>SX_345</td>
<td>Speed Vector <a href="mailto:x-direction@34.5m">x-direction@34.5m</a></td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>SY_345</td>
<td>Speed Vector <a href="mailto:y-direction@34.5m">y-direction@34.5m</a></td>
<td>1</td>
<td>0 [m/s]</td>
<td></td>
</tr>
</tbody>
</table>
4.14 Field experiences

The instrumentation was originally designed and partially carried out during 2006, and finished by 2007. The Nordtank turbine was then under repair from 2008 to 2009. Here the rotor was taken down for rotor blade repairs: refurbishment of tips, repair of surface cracks, and renewing the blade vortex generators which were broken. During spring the rotor was installed without blade strain gauges. During summer the strain gauges on the blades were installed. In July 2010 the system was ready for loads calibration, but a fault in blade No 1 flapwise instrumentation was discovered. In connection with the re-establishment of blade 1 strain gauges, the installations on the blade have shown drifting problems due to water ingress. Even after during 2010 and onwards, blade strain gauges are prone to drifting—even when considering that mounting are executed with the same quality procedures ‘as usual’.

In late fall 2010 the preparations for extending the mast instrumentation to contain cups and sonic devices for IMPER, as shown in Figure 20. The cup anemometers at heights of 27 magl and at 45 magl have been installed to provide a better capability.
to profile the wind. The mast was fully operational by March 2011, but suffered a week of downtime due to a failure caused by mice destroying the fibre optic cable.

The nacelle has been modified in late 2010 to carry a platform for the SWE LIDAR as shown in Figure 17, left.

5 Extended power performance measurements approach

5.1 Methodology

Analysis of data is carried out on the power performance according to the recommendations of IEC 61400-121[5.10] and on loads according to IEC 61400-13[5.11]. The recommended practices[5.13] on load cycles and counting techniques are used to categorize conditions defining a capture matrix with respect to:

- normal power production
- normal power production plus occurrences of faults
- parked conditions
- normal transients events and
- other than normal transients events

In the present analysis the normal production condition was particularly selected for further analysis for loads and performance studies.

The data are post processed on a time series basis with a accredited code posttime.exe, filtered according to the selection criteria and normalized with a accredited code easy06082004.exe as per power- and loads standards, and for statistical properties with MsExcel2003®.

The time series are in parallel processed and stored in a database environment allowing analyzing the statistical properties of the data with MySql® and MathematicaV7®.

The fatigue loads are evaluated using the Rainflow counting method (RFC). The RFC results in a load spectrum with information regarding the number of load cycles with a certain magnitude. The load spectrum was calculated for every 10-minute period. This procedure took place immediately after the end of each 10-minute sampling period (as a background operation) and simultaneously with the sampling of the next data set. The original result is a two dimensional vector consisting of the magnitudes of loads and the number of times these magnitudes appeared during those ten minutes. From these numbers the equivalent load corresponding to an equivalent predefined number of load cycles was calculated.

The RFC method is described in detail in Ref. [5.11] and the fundamental assumption is that the Palmgren-Miner damage rule applies. This rule states that, it is possible to accumulate the fatigue damage experienced by a component with the use of a simple linear method and thus obtain information on the total fatigue damage in a certain time period. The RFC is here performed using 50 range levels between minimum and maximum of the signals and a jitter filter size of one range level After the RFC load spectrum is established for an average of ten-minutes it is converted into an equivalent load range \( L_{eq} \) , and an equivalent number of load cycles \( N_{eq} \).
which together should have the same damaging effect as the original RFC load spectrum for the time period of the 10 minutes. Thus two numbers $L_{eq}$ and $N_{eq}$ can express the fatigue damage in a ten-minute period finally. $N_{eq}$ has in this case, been selected arbitrarily equal to 600 in order to match one second. With $N_{eq}$ selected as constant all information on the fatigue damage is expressed as $L_{eq}$, defined as:

$$L_{eq} = \left[ \frac{\sum R_i^m \cdot n_i}{N_{eq}} \right]^{1/m}$$

where $R_i$ is the magnitude of the range level $(i)$ and $n_i$ the number of times this range level appeared.

The exponent $(1/m)$ is the slope of the material Wöhler curve and the summation is carried out over the total number of ranges $(i=50)$ in the Rainflow spectrum. $L_{eq}$ is in the present case calculated for $m=12$ for strain gauges on the blades, $m=8$ for strain gauges on the shaft and $m=4$ for strain gauges on the tower. The method has been performed on 35 Hz sampled data sets.

### 5.2 Selection of data

While the 35 Hz data acquisition system runs on an automatic mode, regular data collections are provided and forwarded for processing on a server for data base processing (statistics) and for time series. A comprehensive analysis of statistical data from the Nordtank data base has been performed here, and the measurements are covering a period from April to November 2011. A refinement of the data selection is carried out to reflect the following criteria:

- The measurement period covers the period May 29 15:40 to September 30 24:00 2011, in all 1792 10- minutes data
- All westerly wind direction sectors within the measurement period, i.e. between 223° to 343°.(sector +-60 Deg from base 283 Deg)
- Run duration equal to 600 sec.
- Wind turbine available ($I_{brk} = 0$)
- No failure on the test equipment
- No turbulence selection/specification
- No fault, no maintenance or no manual shut down on the wind turbine($I_{gen} = 0$)
- No still stand of the wind turbine($I_{gen} = 1$)

### 5.3 Loads and performance analysis

Derived signals were generated in the post processing process to provide the following channels shown in the overview of Table 4:

#### Table 4 Derived channels overview

<table>
<thead>
<tr>
<th>Ind</th>
<th>Variable</th>
<th>Name/description</th>
<th>Gain</th>
<th>offset</th>
<th>SI-unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>Airdens</td>
<td>Air density</td>
<td>1</td>
<td>0</td>
<td>[kg/m³]</td>
</tr>
<tr>
<td>ID</td>
<td>Variable</td>
<td>Description</td>
<td>Unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>WindDir</td>
<td>Wind Direction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Yaw_Dir</td>
<td>Nacelle position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Yaw_err</td>
<td>WindDir minus Yaw_Dir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Mx11_MR</td>
<td>Blade bending moment (edge), Blade 1, mean removed</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>MyNr_MR</td>
<td>Shaft bending moment, mean removed</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>MtNr_MR</td>
<td>Shaft bending moment, mean removed</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Omega_L</td>
<td>Rotor speed, main rotor shaft</td>
<td>[rad/s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>ShtPm_L</td>
<td>Mechanical power, main rotor shaft</td>
<td>[kW]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Omega_H</td>
<td>Rotor shaft speed, generator</td>
<td>[rad/s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>My21_MR</td>
<td>Blade bending moment (Flap), Blade 2, mean removed</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>MtNf</td>
<td>Rotor yaw moment</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>MyNf</td>
<td>Rotor tilt moment</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Mx_TB</td>
<td>Tower Roll bending moment</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>My_TB</td>
<td>Tower Tilt moment</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>WS_54M</td>
<td>Wind speed cup 54m</td>
<td>[m/s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>WS_36M</td>
<td>Wind speed cup 36 m</td>
<td>[m/s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>WS_18M</td>
<td>Wind speed cup 18 m</td>
<td>[m/s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>WS_SHR</td>
<td>Wind shear exponent weighted over 18m, 27m, 36m, 45m, 54m</td>
<td>[1/s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Mx11_OR</td>
<td>Blade bending moment (edge), Blade 1, mean removed</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Mx21_OR</td>
<td>Blade bending moment (edge), Blade 2, mean removed</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Mx31_OR</td>
<td>Blade bending moment (edge), Blade 3, mean removed</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>My11_OR</td>
<td>Blade bending moment (Flap), Blade 1, reference to Blade 2</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>My21_OR_ref</td>
<td>Blade bending moment (Flap), Blade 2, reference</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>My31_OR</td>
<td>Blade bending moment (Flap), Blade 3, reference to Blade 2</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>WSM_54M</td>
<td>WSM_54M</td>
<td>[m/s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>W_S_W_36</td>
<td>Wind speed @ 36m (average of north, south)</td>
<td>[m/s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>WDDiff_525_16S</td>
<td>Wind Direction difference between 52.5m and 16.5m</td>
<td>[Deg]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Mx11</td>
<td>RFC Mx11</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>My11</td>
<td>RFC My11</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mx21</td>
<td>RFC Mx21</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>My21</td>
<td>RFC My21</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mx31</td>
<td>RFC Mx31</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>My31</td>
<td>RFC My31</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MTBEW</td>
<td>RFC MTBEW</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MTBNS</td>
<td>RFC MTBNS</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>MtNf</td>
<td>RFC MtNf</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>MyNf</td>
<td>RFC MyNf</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mx_TB</td>
<td>RFC Mx_TB</td>
<td>[kNm]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mx11_OR, Mx21_OR and Mx31_OR are intended to suppress offset drifting of the strain gauges by removing the mean value of the series. My11_OR, My21_OR and My31_OR are referred to My21 signal because this has been the most stable throughout the period with little zero drifting. However it is by far not standard to correct in this way; the normal is to conduct measurements at ‘no wind’ conditions as reference. WSM_54M means a geometric means of wind speed sensor south and north, and WSW_36 is the area weighted wind speed (e.g. $A_1 \sum u_i$) of the cups at 18magl, 27, 36, 45, 54 and 57 magl.

The last 13 channels are expressing Rainflow counting to be applied in the analysis results.

### 5.4 Results from post processing time series

The results are provided in the appendix and gives an overview of the channels plotted (average, standard deviation, minimum and maximum) as functions of average 10 minute wind speed at 36 m.

The blade moments discussed are corrected for zero drift; a simple correlation of mean values (power versus flapwise bending moment) is used to manipulate the curves from the original line inherited with drifting to a common, unbiased reference.

The filtered data covers a period from 20110704 13:00 to 20110913 11:40, expressing the applied filters mentioned previously. The plots show the signals with the wind turbine power ranging from cut in to stall conditions, at about 16 m/s.

A final remark: the analysis is provided for test conditions where the wind turbine is exposed to a free wind, which inherently is without any mechanical turbulence from other turbines. In other words, the natural turbulence is without footprints from processes that structures the wind in a certain pattern.

#### 5.4.1 Wind direction difference over the rotor disk area

In the following plots the 35 hz observed wind direction difference at 52.5m and at 16.5m differences (e.g.) over the rotor disk area is presented; Figure 27 shows the overall observed distribution.
Figure 27 Wind direction difference, in average during the period

About the distribution within 10 minutes itself, there is more variation than indicated in Figure 34; in average the distribution of wind direction difference over the rotor disk area is as indicated in Figure 27, with an average veer of -0.5 Deg and a range of almost 70 Degrees. It is also within this band from -20 to 20 Deg where most the power is produced from the wind turbine. However during the measurement period substantial variation in veer has been observed as shown in Figure 28.

The observations show that during the day and night the wind direction pattern changes, as indicated in Figure 29, and in Figure 30. The wind speeds are 5 m/s±0.25m/s and 8 m/s±0.25m/s, respectively. It is likely that there is a yearly variation of this pattern, but in absence of long term measurements this is open.

Figure 28 Distribution of wind direction differences within 10 minutes during the period into 27 curves. The bin width is 1 Degree.
Figure 29 Wind direction distribution (counts) over the rotor disk at 5 m/s, at different timings. Each of the runs corresponds to each 21000 counts.

Figure 30 Wind direction distribution (counts) over the rotor disk at 8 m/s, at different timings

Figure 31 shows again a cycle of the variation during a whole day and night, on the basis of all time series analysed.
5.5 Results from analysing MySQL Nordtank database

The Nordtank database was used to derive correlations between different parameters as explained in the introductory chapters. The analysis describes wind characteristic parameters (nocturnal variations, stability, and turbulence), and wind turbine output from a point of view where the wind turbine extracts power as reacts to the inflow in a structural way. The results are presented in the following:

With the applied filtering, the data are distributed statistically more or less even over the period, as indicated in Figure 32.
5.5.1 Turbulence

Figure 33 shows the turbulence intensity during the entire measurement period and can be fitted nicely by applying $F(\Gamma(1+2/k)/ \Gamma(1+1/k)^2 - \langle u^3 \rangle/\langle u^2 \rangle^2 = 0)$ with result $(A,k)=(4.34,1.680)$.

The day-night variation of turbulence intensity is shown in Figure 35. During night there is more stable conditions in the ABL, and during day time the wind is characterized as to unstable or near neutral conditions [5.22].

![Figure 33 PDF of the turbulence intensity during the measurement period](image)

5.5.2 Flow towards and over the rotor disk area

Figure 34 shows the distribution of the 10 minutes data, and with a similar fitting procedure than for the wind speed, the Weibull distribution is fitted nicely with the data.
Figure 34 Wind veer (WD@52.5m-WD@16.5m). 10 min- average values distribution over the rotor disk Weibull fit A,k(9.07,3.219)

Figure 35 shows the difference in wind direction measured at 52.5m and at 16.5m with Sonics, here shown as 10 minute averages over the day and night time. In connection to turbulence it also shows that the nocturnal wind is characterized as less turbulent than at noon, with the higher extend of energy radiated from the sun to the soil and with a more unstable classified wind. It also means that horizontal direction changes are to be expected over stable ABL during night and that a well mixed ABL show less variance during mid-day.

Figure 35 Direction difference over the rotor disk area (scatter 10 minutes data) and Temperature difference diff54_10m (red solid line, scaled arbitrarily), and Tu (green solid line, scaled arbitrarily) on an hourly basis.
Figure 36 shows the veer relationship with the wind direction, and it is obvious that the low turbulence from the direction of the open fjord is providing a situation with a lump of air with more or less unchanged wind direction differences over the rotor. In comparison the landscape towards south reflects variations, likely governed by the more hilly contours.

The sonic instrumentation provided inflow measurements with regard to mean horizontal directional changes (Figure 37), mean inclination (divergence from vertical, Figure 38) and the mean air temperature profile (Figure 39). The temperature profile was unexpected and particular analysis of the instrumentation showed as in Figure 40, that the deviations between the temperature readings are about 1.8 DegC compared to the reference Tabs@54magl. On the discussion of instrumentation uncertainty we have uncertainty on the installation (e.g. verticality) connected with the observations, and the flow distortions and mast deflections at the sensor positions. A verticality of 1 Deg seems to be technically difficult though, but achievable. In this perspective results are to be connected to uncertainties which will rules out definite differences observed.
Figure 37 Mean value of horizontal direction over height

Figure 38 Flow inclination (tilt) over height
Figure 39 Air temperature over height

Figure 40 Fit of Sonic temperature @34.5m (red), @52.5m (blue) and @16.5m (green) as function of sonic temperature ST_52_5 (referenced to Tabs @54magl)

Figure 41 shows a comparison between the mean values from cup anemometers and from the three Sonics during the period, and through the observed temperature difference of the sonic anemometer at 16.5m it could be obvious that the measurements from this particular sonic is different to what it should be.

The cup anemometers have been analyzed to derive a wind signal which takes into account the vertical shear over the rotor disk, and Figure 42 shows a comparison of the weighted wind speed with the point measurement at 36 m. The spread of this
ratio at lower wind speeds is more remarkable than the ratios observed at higher wind speeds.

Figure 41 Comparison of cup anemometers (green line) and Sonics (gray line)

Figure 42 Weighted wind speed ratio vs. wind speed at hub height, cups

5.5.3 Vertical Shear

Figure 43 is reflecting that the speed data over the rotor disk area have been transformed into a power law fit \( U(z) = U(z_{ref}) \cdot \left( \frac{z}{z_{ref}} \right)^{\alpha} \), and that the exponent \( \alpha \) is an expression of the wind characterisation with respect to vertical shear.
Figure 43 is a result of this analysis for the period, and shows that particular curviness is obtained at low wind speeds. Figure 44 demonstrates the effect the different wind profiles during night and day cycles in the period. In conclusion the night variation is an expression for more stable boundary layer than the wind characteristics during day between 6 and 18. The ABL is in this way described to be similar to what has been experienced in this project with analysis of the wind over MMW turbines with very large rotor disk areas, such as the turbines at Høvsøre [3.1, 3.2].

A comparison with a power law shows, that measurements derived from the cup anemometers are comparable to different cases of shear exponent, as shown in Figure 45. In the fit the mean values have been adjusted to fit with the mean values, shown in blue. The different shear cases are typical mean values from the classification of the shear into ($\alpha \leq 0.15$, $0.15 < \alpha < 0.3$, $\alpha > 0.3$). A variation with approximately 5.5 m/s between minima and maxima of the same readings are observed in the same plot. Additionally the standard deviation observed is more or less constant, which is close to the standard assumption, as shown in Figure 41($\sigma u(z) \approx \text{constant} => \text{Turbulence intensity } Tu(z) \text{ decreases with increasing } z$).

At Høvsøre, observations of low level jets and the interaction between external and internal boundary layer have complicated analysis of wind possessing deviating, conditional determined turbulence intensity shapes and wind profiles[3.13].

At the present site, turbulence variability during day-night cycles was mentioned in Figure 35 as one of the effects associated with wind directional changes over the rotor disk area, and Figure 46 explains the physical basis on the temperature difference between air and the air layers close to the soil.
Figure 44 Measured diurnal wind profile cycle

Figure 45 Mean values of average(solid blue line), standard deviation(purple), minimum(brown) and maximum(black) wind speed in comparison with different synthetic shear cases based on power law $U(z)=U(z_{ref})(z/z_{ref})^\alpha$, Green:$\alpha=0.4$, Red:$\alpha=0.2$, Blue: $\alpha=0.1$. $z_{ref}=36m$
Figure 46 Temperature difference (scatter) and mean (line) development on an hourly basis

Figure 47 Distribution of wind shear in the rotor disk area

5.5.4 Horizontal wind direction differences and Yaw error
Figure 48 shows the results for the wind turbine with the effect of yaw error. The almost constant yaw error results qualitatively in no significant difference of the power curve. The experience from simulations conclude on a Cos2 dependency with the yaw error; in the present cases of (-15..-10Deg, (-10..-5Deg) and (-5..0 Deg) they account with (-7%..-3%), (-3%..-0.7%) and less (-0.7%..0%), respectively.
Reductions of 7% at 6 m/s and 10 m/s are approximately 5 kW and 24 kW, respectively and are within the ranges measured. Later it is shown that the loads are increased with the effect of yaw misalignment. The conclusion to draw from this is that ideal flow conditions, e.g. wind turbine conditions with no yaw error, have not been reached under the present conditions.

Figure 49 shows in conclusion what have been observed in simulations (Figure 1), that power variability decreases with increasing turbulence intensity.

![Figure 48 Density corrected power vs. wind speed at hub height, for different cases of yaw error (-15..-10 Deg, -10..-5 Deg, -5..0 Deg)](image1)

![Figure 49 Power variability as function of turbulence for different cases of yaw error (-15..-10 Deg, -10..-5 Deg, -5..0 Deg)](image2)
5.5.5 **Vertical shear effect and rotor performance**

Figure 51 demonstrates the effect of shear for the wind turbine rotor. The shear is divided into classes $\alpha \leq 0.15$, $0.15 < \alpha \leq 0.3$ and $\alpha > 0.3$. From the figure the shear profile (as in Figure 45) with the least curvature is dominating in the lower wind speeds around cut-in, and the second largest class in the operating region of the turbine around maximum efficiency. The shear similar to a power law with the steepest curvature is to be found in the complete region from cut-in into deep stall region.

![Figure 51: Shear profile](image)

$\alpha \leq 0.15, 0.15 < \alpha \leq 0.3, \alpha > 0.3$

*Figure 50: Power vs. wind speed at hub height for different shear cases*

The variation of the data within a band (point variation) is remarkable, significant and apparently uncorrelated with the wind speed at hub height. With the project objectives in mind, this may start speculations why we do not have a better correlation between power and wind speed. Anyway, dividing the power with $\frac{1}{2} \rho U^3$ representing the dimensionless coefficient $C_p$, we see with Figure 51 that the scatter has not decreased significant. On the other side, Figure 52 demonstrates what simulation is able to predict, that lesser turbulence effects tends to decrease the efficiency for the conditions on the left hand side of maximum efficiency.[3.2, 3.10]. Less turbulence is correlated as shown with more stable boundary layer (SBL). The wind profiles were as shown less steep.

For the discussion of the experimental results correlated with atmospheric turbulence, Figure 53 shows that a rotor is able to ‘exploit’ turbulence. The statistical significance decreases at high turbulence levels but tends to ‘limit’ the effects. At the moment we could state, that the rotor is unable to extract energy out of eddies beyond a certain size. However, turbulence intensities are connected with the ability to increase the relative energy capture as shown in Figure 54. Ideally the coordinates
\((1+Tu^2, 3Tu)\) should fit with the trend. As is shown in the fit, the statistical basis for fitting higher Tu is rather limited, and much scatter of the data at low Tu exists. The result is in comparable agreement with [3.10]. In conclusion there is yet no (new) explanation for why \(s(\text{Pe})/\langle\text{Pe}\rangle\) develops as it does.

A way to decrease the scatter of points around a coordinate \((U, P)\) on the power curve is to incorporate the above ‘fit’, e.g. to replace average wind speed as \(U(1+Tu^2)\), or to increase the energy over the rotor disk area as \(\frac{1}{2}\rho U^3 A(1+3Tu^2)\) and to non dimension \(P\) with it. This effort on wind speed is made in Figure 55, and on \(C_p\) in Figure 56. It demonstrates to some extent to reduce the scatter compared to what was observed. Again the division of turbulence intensity into high (blue: above 0.2), medium(red: between 0.10 and 0.2) and low(green: under 0.10) shows that turbulence decrease rotor efficiency below \(C_p\) max, and for wind speed right of \(C_p\) max it increases the efficiency. Fitting the data with a weighted wind speed reflecting the vertical shear profile does not change essentially the above findings.

The question “Why does the power curve scatter, even we apply turbulence corrections etc” still remains.

One of the ideas to gain insight was to learn from the footprints of the structural signals. As mentioned in the introduction, in a simple rotor airfoil model, lift is more or less directed co-parallel with the wind direction \([3.6, 3.7]\), and the turbulence is proportional to flapwise moment variability. In the rotation plane, edge wise bending moment variation are according to \([3.6]\) an improvement for enhanced power due to turbulence\([3.6, p C1-5]\).

Figure 57 shows the variability of edgewise bending moment with varying tip speed ratio (TSR) with low wind speeds from right to left. Under these conditions given, the results show that there is more potential to utilize energy at low wind speeds than at high wind speeds (low TSR), and that the function has a global minimum about TSR of 4.2.

Before entering the discussion of spectral analysis of the flapwise bending moments, this signal (Blade 2) is shown in Figure 58.

Another interesting feature with thrust is that this parameter multiplied with wind speed is proportional to power extracted from the wind; see Figure 59, with a more linear function than as seen in ordinary power curves. This relationship could be interesting to study on the variations in terms of power extraction and the interaction of the wind turbine itself(rotor filter function, tower deflection dependency). However to do so, there is substantial need to acquire stable strain gauge signals.

Figure 60 show the role of turbulence as it has importance on the loads over power ratio. The data set is not complete for describing high turbulence, but fairly a good trend is obtained from the plot: fewer loads are generated per power generated. However caution should be emphasized because it is a relative measure. Qualitatively the power generated increases with the wind speed and limits towards stalled conditions together with a smaller variance on power. Since the ratio increases heavily, the numerator must be limited by less variation of the flap wise loads(as can be seen in the appendix for corresponding blade loads). In conclusion the figure tells us that the decrease of turbulence intensity increases the loads over power output, e.g. there seems to be a basis for improving the power and reducing the loads in an aerodynamic optimisation process. If it is another way of stating that the aerodynamic lift has a improper variation along the blade is a question for specific simulations to be conducted.
Figure 51 Power coefficient vs. wind speed at hub height for different shear cases

Figure 52 $C_p$ versus wind speed (binned values) for three different turbulence classes
(Green: $Tu > 0.2$, Red: $0.1 < Tu \leq 0.2$, Blue: $Tu \leq 0.1$)
Figure 53  Power(scatter) and binned(red) and shear(green) trends vs. Turbulence intensity $Tu$ (scaled for comparison)

Figure 54  Power variability vs. Turbulence, and a $(1+Tu^2, 3Tu)$ fit
Figure 55: Power corrected for density variations other than 1.225 kg/m$^3$, and wind speed corrected for turbulence effects (red dots).

Figure 56: Power coefficient corrected for density variations other than 1.225 kg/m$^3$ without turbulence effect (blue dots) and with corrected (red dots).
**Figure 57 Edgewise moment variability vs. TSR**

**Figure 58 Measured flapwise bending moment**
Figure 59 Corrected power vs. derived signal power = force x speed

Figure 60 Loads over power ratio vs. wind speed for different turbulence intensity classes

5.6 Spectral analysis
The wind speed, flapwise bending and power signal are investigated with spectral methods to provide better understanding of the variability in power compared to wind speed.

In Figure 61 spectra of the wind speed 1 (average wind speed of south and north cup anemometer at 36m) and 2 (weighted wind speed) Blade 2 bending moment, blade 1 bending moment and blade 3 bending moment is shown as signal 3, 4, 5 and electrical power as signal 6.
A black vertical line is drawn to indicate the cup anemometer 3-dB threshold frequency, and the brown line to indicate the pulse each time a blade passes the tower. Also a black line is indicating the -2/3 slope in the spectrum, as in classic wind spectra. The -5/3 line is omitted for comparison with the power signal and flap bending moment signals.

The plot show a strong connection between the structural signals and the power—a strong similarity exists compared to with the wind signal. The difference between the black and red line is not that typical; it seems that the weighted wind speed follows the ‘unfiltered’ part of the structural and power signal better.

On the discussion of the turbine signals ‘rotational sampling’ has been used to explain the effect of the spikes(peaks) evolving in the spectra. This part has to do with that the blades segment by segment penetrate part of the boundary layer with speed differences over the rotor disk area. The shear plays a particular role in contributing to the variance (area under the curve), and hence to the ordinate of the spectral power signal (electrical power P). Because the variations in wind affects the in plane driving torque variations(lateral) edgewise bending and power signal P, it also has a contribution to the longitudinal (flapwise bending moment) signal(indicated previously as proportional to σu/U).

Another difference is between power and structural signal that the power spectrum contains more area under the curve, and consequently more variance at low frequencies. One of the reasons for this is that variations of different kind of nature play a role in this. The turbulence spectrum such as Kaimal[5,22] shows a specific maximum and the area to the left of that normally is described with a decay towards higher frequencies where turbulence is governing.

![Figure 61 Spectra of main parameters: wind speeds(1,2) flapwise bending moment blade2, blade1,blade3(3,4,5) and power(6)](image)

A 1st order description of what might happen with the wind turbine fluctuating power is to look at the flux in terms of spectral description can be found by looking again at
chapter 2.2 and derive the formula on the flux with longitudinal mean \( U \) and variation \( u(t) \):

\[ E(t)/\rho \rightleftharpoons (U+u)^3, \]

which is expressed as:

\[ E(t)/\rho = U^3 + 3Uu(t)^2 + 3u(t)U^2 + u(t)^3 \]

with variables as shown functions of time \( t \).

Now building the spectrum of \( E(t) \) to a first order on the basis of \( 3u(t)U^2 \) gives

\[ \omega S_E(\omega) \approx \omega \int 3u(t)U^2 d\omega \approx \left( \frac{1}{2\rho} \right)^2 9 U^4 \omega S_u(\omega) \]

With \( \omega = 2\pi f \) this can be compared with the spectra and shows that the variations add to the area under the spectra for the power signal in Figure 61.

The influences of night day variations are shown in Figure 62 to Figure 64. The selection is based only on 7 and 13 data sets within August of nocturnal and daylight situations, respectively. Averaging over longer periods than August, spectra are averaged out leaving no trend as below.

The influence of the conditions governed by nocturnal ABL situations during late afternoon, night and early morning between 18 and 06 is shown in Figure 62. As per Figure 44, the average profile during these hours is less steep and contributes to the power spectrum of the power signal (brown). This observation goes also for the other wind and flapwise bending signals.

Figure 62: Influence of diurnal conditions between 18-06 (stable) on power signal (thick brown)

The influence of the conditions governed by daylight ABL time series between 06 and 18 is shown in Figure 63. Due to the diurnal situation, the wind profile is steeper and lowers the area under the power spectrum of the signal.

Figure 64 shows both effects in comparison with the Kaimal spectrum. The integral length was estimated with an arbitrary constant to fit the spectra of the power signal on a visual basis. The result of about 200 m tell that eddies in size are around 5 times the rotor diameter. At the same time the Kaimal spectrum shows the shape of the
turbulence spectrum, and that the low frequency variations are different (according to classical descriptions [5.21]: they decrease for increasing frequencies).

Figure 63 Influence of diurnal conditions between 06-18 (unstable) on power signal (thick brown)

Figure 64 Influence of stable and unstable conditions in comparison with Kaimal spectrum [5.22]. The integral length is determined as 204 m.
5.7 References


5.3. Wind turbine Test, NORDTANK NTK 500/37, Risø-R-714, December 1994


5.5. Accelerated Fatigue Testing of LM 19.1 Blades, Risø-R-1358, May 2003


5.8. Validation of Aeroelastic Model of Nordtank 500/37, Risø-R-1006, November 1997

5.9. Helgesen K.O., LabVIEW Data Acquisition exercise from 500 kW Wind Turbine, DTU-Oersted 2005

5.10. INTERNATIONAL STANDARD IEC 61400-121, Wind turbine generator systems – Part 121: Wind turbine power performance testing


5.12. INTERNATIONAL STANDARD IEC 61000-4-7, Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto

5.13. IEA Recommended Practices for wind turbine testing and evaluation; 3. FATIGUE CHARACTERISTICS.


5.16. Wagner, R. et al., Accounting for the speed shear in wind turbine power performance measurement, Wind Energy, 2011; 14:993--1004

5.17. DAU P2858 Data Acquisition Unit description, User manual. Risø 17-12-2001


6  Simulations on the 500 kW wind turbine

The aero elastic simulation tool HAWC2 (*Horizontal Axis Wind turbine simulation Code, version 2*) is a code designed for calculating wind turbine response in time domain. It has been developed at the aero elastic design research programme in the Wind Energy Department of the Risø National Laboratory.

The HAWC2 code is based on a multibody formulation where the turbine is subdivided into a number of bodies interconnected by constraint equations. Within a body the calculations are linear, which is valid as long as deflections and rotations are small, whereas large deflections and rotations are accounted for through the coupling of bodies. Using too few bodies will therefore result in a reduction of non-linear problems into a linear.

The sign conventions are adapted from the user manual [1] and shown in Figure 65.

![Figure 65 Illustration of coordinate system as result of user input][6.1]. There are two coordinate systems in black which are the default coordinate systems of global reference and default wind direction. The blue coordinate systems are main body coordinate systems attached to node 1 of the substructure, the orientation of these are fully determined by the user. The red coordinate systems are also defined by the user, but in order to make the linkage between aerodynamic forces and structure work these have to have the $z$ from root to tip, $x$ in chordwise direction and $y$ towards the suction side.

In the structural model of the 500 kW Nordtank wind turbine [6.2] data of the blades and wind turbine were implemented.
6.1 Simulation cases selection
The simulation cases were generated by selecting cases from the real measurements collected from the mast and the wind turbine extending from April to November 2011. The filtering was made according to the description in 5.2.

6.1.1 Set up of HAWC2
The data remaining after filtering were binned according to the wind speed at hub height per bin of 1 m/s from 4 to 16 m/s. Within each wind speed bin, the wind speed profiles were binned according to their shape (i.e. wind speed at the 4 other levels). This resulted in a various number of profiles bins for each wind speed bin. Finally, one profile was randomly chosen from each profile bin. 141 different profiles were thus obtained.

Each one of these profiles was the basis for a simulation case. The 2-dimensional 10-min mean wind speed vector at the 5 levels was given as input for the wind speed profiles through the “user-defined-shear” function; i.e. at each level the mean wind speed was combined to the mean direction deviation from the wind direction at hub height; thus characterizing both the shear and the veer. Similarly, the wind speed standard deviation was given at each level through the “user-defined-turbulence-shear”.

Every simulation case were run with 10 turbulence seeds (with the Mann model of turbulence) in order to be statistically significant.

6.2 Results and comparison with experiments
Following channels shown in Table 5 are calculated, and for comparison with measurements a selection of these variables have been made. The statistics of the simulation cases have been carried out up to 11 m/s (the simulation above 11 m/s were not finalized due to a PC problem) and plotted with selected measured signals for comparison in this report.

There is a general fair agreement of computed variables against measured signals. Structural signals seems to be of difference, in particular the flapwise signals have higher outputs than measured.

In Figure 96 the estimated load over power sensitivity factor is by far comparable in levels with the measured ones shown in Figure 60. One difference is about on the gain of the flapwise bending moment which influences the variance over mean flapwise bending moment. In conclusion there is effort to do in finding the reasons for these particular differences between measurements and calculations.
Table 5 Calculated channels

<table>
<thead>
<tr>
<th>Channel Variable Description</th>
<th>Unit</th>
<th>Description</th>
<th>X [m]</th>
<th>Y [m]</th>
<th>Z [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Time</td>
<td>s</td>
<td>Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Omega</td>
<td>rad/s</td>
<td>Rotor speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Ae rot. Torque</td>
<td>kNm</td>
<td>Aero rotor torque</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Ae rot. Power</td>
<td>kW</td>
<td>Aero rotor power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Ae rot. Thrust</td>
<td>kN</td>
<td>Aero rotor thrust</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 WSP gl. coo.,Vx</td>
<td>m/s</td>
<td>Free wind speed Vx, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-14.00</td>
</tr>
<tr>
<td>7 WSP gl. coo.,Vy</td>
<td>m/s</td>
<td>Free wind speed Vy, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-14.00</td>
</tr>
<tr>
<td>8 WSP gl. coo.,Vz</td>
<td>m/s</td>
<td>Free wind speed Vz, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-14.00</td>
</tr>
<tr>
<td>9 WSP gl. coo.,Vx</td>
<td>m/s</td>
<td>Free wind speed Vx, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-17.50</td>
</tr>
<tr>
<td>10 WSP gl. coo.,Vy</td>
<td>m/s</td>
<td>Free wind speed Vy, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-17.50</td>
</tr>
<tr>
<td>11 WSP gl. coo.,Vz</td>
<td>m/s</td>
<td>Free wind speed Vz, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-17.50</td>
</tr>
<tr>
<td>12 WSP gl. coo.,Vx</td>
<td>m/s</td>
<td>Free wind speed Vx, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-26.50</td>
</tr>
<tr>
<td>13 WSP gl. coo.,Vy</td>
<td>m/s</td>
<td>Free wind speed Vy, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-26.50</td>
</tr>
<tr>
<td>14 WSP gl. coo.,Vz</td>
<td>m/s</td>
<td>Free wind speed Vz, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-26.50</td>
</tr>
<tr>
<td>15 WSP gl. coo.,Vx</td>
<td>m/s</td>
<td>Free wind speed Vx, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-35.50</td>
</tr>
<tr>
<td>16 WSP gl. coo.,Vy</td>
<td>m/s</td>
<td>Free wind speed Vy, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-35.50</td>
</tr>
<tr>
<td>17 WSP gl. coo.,Vz</td>
<td>m/s</td>
<td>Free wind speed Vz, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-35.50</td>
</tr>
<tr>
<td>18 WSP gl. coo.,Vx</td>
<td>m/s</td>
<td>Free wind speed Vx, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-44.50</td>
</tr>
<tr>
<td>19 WSP gl. coo.,Vy</td>
<td>m/s</td>
<td>Free wind speed Vy, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-44.50</td>
</tr>
<tr>
<td>20 WSP gl. coo.,Vz</td>
<td>m/s</td>
<td>Free wind speed Vz, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-44.50</td>
</tr>
<tr>
<td>21 WSP gl. coo.,Vx</td>
<td>m/s</td>
<td>Free wind speed Vx, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-53.50</td>
</tr>
<tr>
<td>22 WSP gl. coo.,Vy</td>
<td>m/s</td>
<td>Free wind speed Vy, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-53.50</td>
</tr>
<tr>
<td>23 WSP gl. coo.,Vz</td>
<td>m/s</td>
<td>Free wind speed Vz, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-53.50</td>
</tr>
<tr>
<td>24 WSP gl. coo.,Vx</td>
<td>m/s</td>
<td>Free wind speed Vx, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-56.50</td>
</tr>
<tr>
<td>25 WSP gl. coo.,Vy</td>
<td>m/s</td>
<td>Free wind speed Vy, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-56.50</td>
</tr>
<tr>
<td>26 WSP gl. coo.,Vz</td>
<td>m/s</td>
<td>Free wind speed Vz, gl.</td>
<td>0.00</td>
<td>0.00</td>
<td>-56.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel Variable Description</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 Mx coo: tower</td>
<td>kNm</td>
<td>Moment, tower nodenr: 1, coo: tower base flange</td>
</tr>
<tr>
<td>28 My coo: tower</td>
<td>kNm</td>
<td>Moment, tower nodenr: 1, coo: tower base flange</td>
</tr>
<tr>
<td>29 Mz coo: tower</td>
<td>kNm</td>
<td>Moment, tower nodenr: 1, coo: tower base flange</td>
</tr>
<tr>
<td>30 Mx coo: tower</td>
<td>kNm</td>
<td>Moment, tower nodenr: 5, coo: tower middle flange</td>
</tr>
<tr>
<td>31 My coo: tower</td>
<td>kNm</td>
<td>Moment, tower nodenr: 5, coo: tower middle flange</td>
</tr>
<tr>
<td>32 Mz coo: tower</td>
<td>kNm</td>
<td>Moment, tower nodenr: 5, coo: tower middle flange</td>
</tr>
<tr>
<td>33 Mx coo: tower</td>
<td>kNm</td>
<td>Moment, tower nodenr: 8, coo: tower top flange</td>
</tr>
<tr>
<td>34 My coo: tower</td>
<td>kNm</td>
<td>Moment, tower nodenr: 8, coo: tower top flange</td>
</tr>
<tr>
<td>35 Mz coo: tower</td>
<td>kNm</td>
<td>Moment, tower nodenr: 8, coo: tower top flange</td>
</tr>
<tr>
<td>36 Fx coo: tower</td>
<td>kN</td>
<td>Force, tower nodenr: 8, coo: tower yaw bearing</td>
</tr>
<tr>
<td>37 Fy coo: tower</td>
<td>kN</td>
<td>Force, tower nodenr: 8, coo: tower yaw bearing</td>
</tr>
<tr>
<td>38 Fz coo: tower</td>
<td>kN</td>
<td>Force, tower nodenr: 8, coo: tower yaw bearing</td>
</tr>
<tr>
<td>39 Mx coo: shaft</td>
<td>kNm</td>
<td>Moment, shaft nodenr: 4, coo: shaft, sg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>40</td>
<td>My coo: shaft</td>
<td>kNm</td>
</tr>
<tr>
<td>41</td>
<td>Mz coo: shaft</td>
<td>kNm</td>
</tr>
<tr>
<td>42</td>
<td>Mx coo: shaft</td>
<td>kNm</td>
</tr>
<tr>
<td>43</td>
<td>My coo: shaft</td>
<td>kNm</td>
</tr>
<tr>
<td>44</td>
<td>Mz coo: shaft</td>
<td>kNm</td>
</tr>
<tr>
<td>45</td>
<td>Mx coo: blade1</td>
<td>kNm</td>
</tr>
<tr>
<td>46</td>
<td>My coo: blade1</td>
<td>kNm</td>
</tr>
<tr>
<td>47</td>
<td>Mz coo: blade1</td>
<td>kNm</td>
</tr>
<tr>
<td>48</td>
<td>Fx coo: blade1</td>
<td>kN</td>
</tr>
<tr>
<td>49</td>
<td>Fy coo: blade1</td>
<td>kN</td>
</tr>
<tr>
<td>50</td>
<td>Fz coo: blade1</td>
<td>kN</td>
</tr>
<tr>
<td>51</td>
<td>Mx coo: blade2</td>
<td>kNm</td>
</tr>
<tr>
<td>52</td>
<td>My coo: blade2</td>
<td>kNm</td>
</tr>
<tr>
<td>53</td>
<td>Mz coo: blade2</td>
<td>kNm</td>
</tr>
<tr>
<td>54</td>
<td>Mx coo: blade3</td>
<td>kNm</td>
</tr>
<tr>
<td>55</td>
<td>My coo: blade3</td>
<td>kNm</td>
</tr>
<tr>
<td>56</td>
<td>Mz coo: blade3</td>
<td>kNm</td>
</tr>
</tbody>
</table>
Figure 66 Mean Nacelle position

Figure 67 Mean Yaw error (wind direction-nacelle position)
Figure 68 Mean Wind speed

Figure 69 Stdev wind speed
Figure 70 Mean Tu

Figure 71 Mean Tower torsion
Figure 72: Stdev Tower torsion

Figure 73: Mean Tilt moment
Figure 74: Stdev Tilt moment

Figure 75: Mean Tower roll bending moment
Figure 76: Stdev Tower roll bending moment

Figure 77: Mean Rotor Shaft moment
Figure 78 Stdev Rotor Shaft moment

Figure 79 Mean rotor shaft bending
Figure 80 Min and Max rotor shaft bending

Figure 81 Stdev Rotor shaft bending
Figure 82 Mean Rotor Shaft Power

Figure 83 Stdev Rotor Shaft Power
Figure 84 Mean RPM

Figure 85 Stdev RPM
Figure 86 Mean Flapwise bending moment ref blade

Figure 87 Stdev Flapwise bending moment ref blade
Figure 88 Mean Flapwise bending moment Blade 1

Figure 89 Stdev Flapwise bending moment Blade 1
Figure 90 Mean Edgewise bending moment Blade 3

Figure 91 Stdev Edgewise bending moment Blade 3
Figure 92 Mean Edgewise bending moment ref blade

Figure 93 Sidev Edgewise bending moment ref blade
Figure 94 Mean Edgewise bending moment Blade 1

Figure 95 Stdev Edgewise bending moment Blade 1
6.3 References


7 Equivalent wind speed power curve for the Nordtank turbine

In [3.2], it was first shown that the wind speed profile has an influence on the measured power curve of a MMW wind turbine, secondly that the use of the equivalent wind speed accounting for the whole wind speed profile and defined by:

\[ U_{eq} = \left( \sum \frac{U_i^3 A_i}{A} \right)^{1/3} \]

reduces the scatter due to the variation of the wind speed profile and results in a power curve almost independent of the shear. A similar analysis was achieved for the 500kW Nordtank wind turbine power curve.

7.1 Data
The analysis is based on the power curve measurement of the Nordtank wind turbine located at the Risø Campus test site between the 02-06-2011 and 19-01-2012. It is a 500kW wind turbine with a hub height of 36.5m and a rotor diameter of 41m. A met mast is located on the west side of the turbine (283 degrees) equipped with cup anemometers at 5 heights: 18m, 27m, 36m, 45m, 54m, boom mounted on the south side of the mast. It enabled us to measure the wind speed profile within the span of the rotor swept area. The wind direction was measured with a sonic anemometer at 34.5m. Wind directions within 250 and 300 degrees were considered. After selecting data, obtained with normal operation of the turbine and wind speed measurement status the dataset used for the analysis counts 3581 data.

7.2 Method
A similar analysis to that described in [3.2] was achieved for the Nordtank wind turbine power curve. The wind speed profiles were divided in 3 groups according to the shape of the profile, i.e. whether the profile is close to the power law or not, and if not if its kinetic energy flux (KEF_{eq}) defined as:

\[ KEF = \frac{1}{2} \rho U_{eq}^3 A = \frac{1}{2} \rho \sum_{i} U_i^3 A_i \]

is under or overestimated by the wind speed at hub height (i.e. by KEF_{hub} = \frac{1}{2} \rho U_{hub}^3 A). This was achieved first by fitting the wind speed profile measured with the met mast to a power law and estimating the goodness of fit with the residual sum of square (RSS). The the profiles with a low RSS were grouped depending on the ratio KEF_{eq}/KEF_{hub} (see [3.2] for more details). The categorization is as follow:

- Type 1: RSS<0.015 (value taken arbitrarily in order to have a good number of data of each type); i.e. profiles with a shape close to a power law;
- Type 2: RSS>0.015 and KEF_{eq}/KEF_{hub} smaller than the theoretical value of the ratio for a theoretical power law profile; i.e. profiles with a shape deviating from a power law and for which U_{hub} overestimates the KEF of the profile;
- Type 3: RSS>0.015 and KEF_{eq}/KEF_{hub} larger than the theoretical value of the ratio for a theoretical power law profile; i.e. profiles with a shape
deviating from a power law and for which $U_{hub}$ underestimates the KEF of the profile;

The first group of profile is shown in Figure 97 and all three groups together in Figure 98.

The power curve obtained, with the method of bins according to the IEC 61400-12-1 standard [5.10], were evaluated for the 3 groups of data separately, with wind speed at hub height on one hand (Figure 99) and the equivalent wind speed on the other hand (Figure 99).

### 7.3 Results

The various types of wind profiles result in three slightly different power curves. The difference is more obvious in the Cp curves. The power curve (and Cp curve) obtained with the type 2 profiles (red in Figure 99 and Figure 100) is “below” the others, which is in accordance with the profile categorization: the wind speed at hub height overestimates $KEF_{eq}$ for this type of profile. Similarly the green curve is
above the others, as for type 3 profiles, the wind speed at hub height underestimates the KEF. This shows that the wind speed profile has an influence on the measured power curve, for small wind turbine (i.e. below 1MW rated power) as for large MMW wind turbines. The turbine rotor span is smaller but hub height is also lower, therefore located where the shear is stronger.

The power curve and Cp curves obtained with the equivalent wind speed are more similar to each other (see Figure 101 and Figure 102). Both power curves for group 1 and 2 have moved slightly upwards toward the power curve for group 3, which has not changed very much. Moreover power curves for groups 1 and 2 are closer to each other.

The distributions of wind directions (Figure 103) and turbulence intensity (Figure 104) are very similar for type 1 and type 2. Therefore, the difference seen between the black and the red power curves in Figure 99 and Figure 100 are mainly due to the difference in wind speed shear. The equivalent wind speed method reduces most of the difference due to the shear. The average turbulence intensity is very similar for both dataset except for low wind speeds, as shown in Figure 105. This may explain the difference around low wind speeds in the power curve obtained with the equivalent wind speed in Figure 101 and Figure 102.

Figure 103 Wind direction distribution for each dataset.
Figure 104 Turbulence intensity (TI) distribution for each dataset

On the other hand, the turbulence intensity distribution is quite different for group 3. The turbulence intensity is in average larger for this dataset than for the two others; except for wind speeds larger than rated speed (see Figure 106). Thus the power curve for group 3 is above the other 2 (i.e. it gives more energy) not only because of the shear but also because of the high turbulence intensity. This is probably why the power curve obtained with the equivalent wind speed (normalizing the shear effect) remains similar to that obtained with the wind speed at hub height.

The two power curves (Figure 107) are very similar. This is probably due to the fact that there are both profiles for which the KEF was underestimated by the wind speed at hub height and profiles for which it was overestimated. Therefore, on average, $U_{hub}$ is close to $U_{eq}$ for this power curve. However, it is not completely exact since a slight difference can be observed in the Cp curves. There are more profiles for which $U_{hub}$ overestimates the KEF, therefore resulting in an underestimation of the Cp. Figure 109 (resp. Figure 110) shows that the using the equivalent wind speed in the power (resp. Cp) curve clearly reduces the scatter, therefore the uncertainty [3,2].
7.4 Conclusions
A similar analysis to what was done for a MMW wind turbine was achieved here for a 500kW turbine. It shows that shear can also significantly influence the power curve measurement of a small wind turbine. Furthermore, the results coincide with those obtained for the MMW wind turbine. Using the equivalent wind speed in the power curve reduce the differences between the power curves obtained for different types of wind profiles, therefore decrease the scatter in the measured power curve.

However, the profiles for which the energy was underestimated by the wind speed at hub height coincided, in this dataset, with larger turbulence intensity. The higher turbulence intensity is expected to increase the power output for low and medium wind speeds. Therefore some difference remained between he various power curves obtained for the different type of profiles.

Finally, contrary to the analysis made with the MWW wind turbine based on a dataset for which the KEF of most of the profiles was overestimated by the wind speed at hub height, the dataset used in the present analysis counted both profiles for which the KEF was overestimated by the equivalent wind speed. It results that the mean power curve obtained with the wind speed at hub height is very similar to that
obtained with the equivalent wind speed. It reinforces the conclusion that the difference between the 2 power curves depends on the wind speed profile distribution and therefore cannot be corrected for with a simple factor or the assumption of one profile representative for all the dataset. It strengthens the necessity to measure the wind speed profile during the power curve measurement.

8 Speed profile evolution from the shore to the mast

As a part of the project a study on a lightly sloped terrain were conducted to investigate on the usefulness of LIDARS for power curve performance measurements.

8.1 Description of the measurement campaign

The measurements took place at the Risø DTU test site. The measurement campaign took place in several phases. First, one LIDAR (Z2) was placed next to a mast of 45 m (mast V27) in order to verify the LIDAR measurement accuracy. Secondly, the same LIDAR was installed near the shore on the west side (283 degrees) of the Nordtank turbine (in alignment with the turbine and the mast) in order to measure the wind speed profiles at this location and compare them to those measured by the mast in front of the turbine. When the mast was erected on the 29/04/2011, it was equipped with 4 cup anemometers (3 boom mounted on the south side at 18, 36, and 54m and one top mounted at 57m), and 3 sonic anemometers on the north side of the mast. Two complementary cup anemometers were added at 27 and 45m (boom mounted) about one month later.

In the meantime, a second LIDAR (Z107) was installed between the shore and the mast (at about 85m from the shore and 100 m from the nordtank mast). Later, this LIDAR was moved closer to the mast (61.5 m). Unfortunately this LIDAR stopped working on the 24/07/2011; it has not been possible to repair it before the end of the campaign.

The power supply of LIDAR Z2 got flooded (due to strong westerly winds) on the 10/08/2011. It was repaired a couple of days later. But the focus system got stuck on the 27/08/2011. After getting repaired, the LIDAR was placed next to the Nordtank mast (32 m) in order to correlate the LIDAR measurements with the mast measurements. An overview of the measurements available from the different instruments is given in Figure 111.

![Figure 111 Overview of the measurements availability for the different instruments used in the measurement campaign: Yellow: Zephir 2 next to V27 mast](image)

- Blue: mast (3heights) (since 2011-04-29)
- **Red: mast (5 heights) (since 2011-05-30)**
  (missing data are due to a power cut in June and broken fiber optics (by a mouse) that prevented data transfer between 2011-11-28 and 2011-12-02)
- **Green: Zephir 2 at the shore (2011-04-15 15:30 -- 2011-08-27 12:30; power supply got flooded on the 2011-08-10)**
- **Light Blue: Zephir 2 next to the Nordtank mast (from 2011-09-16 16:10)**

Both lidars used in this measurement campaign were Zephirs (from Natural Power) version 1. A Zephir is a continuous wave LIDAR that selects the measurement height by focusing the beam at the corresponding distance. It measures the radial speed at 50 positions around a circle, which are then fitted to a rectified cosine function. From this fit are retrieved the horizontal and vertical components of the wind speed as well as the wind direction [1]. These lidars are good at measuring at low ranges (from 10 to 150 m) but the wind speed measurements can be biased by the presence of low clouds and fog. The automatic (online) cloud correction has been used during the measurements for both units.

Both masts were instrumented with Risø cup anemometers. The calibration mast, situated at the V27 turbine, has a instrumentation shown in Figure 112.
8.2 Verification Zephir unit 2 at mast V27

First of all, the first LIDAR (Z2) was placed next to the V27 mast in order to be compared with the cup measurements. The mast is equipped with 4 cup anemometers (3 boom-mounted, at 18.5, 30 and 32 m, on the south side of the mast, and one top mounted at 45 m). This mast is positioned on the west side of a V27 turbine. However during this comparison, the rotor of the turbine had been taken down, therefore the eastern wind sector can also be considered as free from major obstacles.

The sector used for the comparison was chosen such as the cup anemometers were outside the wake of the mast. Therefore the Northern sector had to be excluded (see Figure 2). The sector selected was 80 to 120 and 230 to 300 degrees.
Figure 113 Ratio between the 10 min mean wind speed measured by the cup anemometer (south boom) and the sonic anemometer (north boom) at 32 m vs. the wind direction measured by the vane at 30m. The sector for which the cup anemometer is in the wake of the mast can be detected from this figure.

Figure 114 shows the linear regressions between the 10 min LIDAR wind speed and the corresponding cup anemometer measurements. In these graphs, all data within the selected wind sector with a wind speed above 4 m/s are considered. A Zephir LIDAR cannot measure low wind speed very accurately because of the RIN noise [7]. As a significant amount of outliers were remaining, further filtering had to be applied.
Figure 114 Comparison of the LIDAR (Z2) and the V27 mast cup anemometers for the selected wind sector (80°-120° & 230°-300°) and the wind speed above 4 m/s.

Figure 115 shows once more the comparison and linear regressions between LIDAR and cup anemometer wind speed measurements at the same 4 heights. But, here the data were also filtered so that the “turb” parameter was below 0.1. “Turb” is defined as the residual in the cosine fit (so called figure of 8). This parameter gives an indication of the scatter in the figure of 8. A large scatter, that can be due to turbulence within the scanning circle, but also to noise in the measurements, or partial clouds, usually results in a bad fitting and an error in the wind speed indication. Therefore excluding data for which the 10 minute value of turb exceeds 0.1 is a good compromise between the acceptable data with some turbulence and non-acceptable data.

All the obvious outliers seen in Figure 114 do not appear in Figure 115. The regression at every height presents a high coefficient of determination ($R^2 > 0.991$). However the gain shows a general underestimation by about 2% of the LIDAR wind speed indication compared to the cup anemometer. It was concluded that the LIDAR was functioning fairly well, but a comparison to the Nordtank mast would be necessary to complete the measurement campaign.

![Regression Lines](image-url)
Figure 115 Comparison of the LIDAR (Z2) and the V27 mast cup anemometers for the selected wind sector (80°-120° & 230°-300°) and the wind speed above 4 m/s with an additional filtering: “turb”<0.1

8.3 Comparison of the profiles

After the LIDAR verification, Z2 was installed right next to the shore at about 200m from the mast in the direction 283°, therefore aligned with the mast and the turbine, the aim being to compare the wind speed profile at the shore and at the mast, to observe how it develops with the change of roughness and the slight slope until it arrives to the turbine.

In Figure 116 below, the mast profiles were binned according the wind speed at 36m, and for each wind speed bin are displayed the average wind speed profile measured by the mast, the average wind speed profile measured by the LIDAR at the shore and the average wind speed profile measured by the LIDAR a between the mast and the shore.
Figure 116 Average wind speed profiles measured by the mast (blue), the LIDAR Z2 at the shore (red) and the LIDAR Z107 at the kink between the change of slope between Z2 and the mast (green), for 6 different wind speed bins

The profiles measured by Z107 are, on average, closer to the mast profiles than those from Z2; which is expected since LIDAR Z107 is only 60m from the mast whereas Z2 is at about 200m. A large difference is observed between the shore LIDAR profile and the mast profile. The question raising then is whether this difference is due to a physical phenomena influencing the profile at the shore or to a bias inherent to the LIDAR measurements. It was therefore necessary to make a proper comparison of the LIDAR with Nordtank mast. In October, LIDAR Z2 was installed next to the mast (about 30 m to the west in order to be close enough but to avoid the disturbance that could be caused by the guy wires on the LIDAR measurements). The comparison of the 10 min mean wind speeds of the LIDAR Z2 and the cup anemometers at the various heights are displayed in the figure below.
Figure 117 Comparison of the LIDAR Z2 at 30 m from the mast and the Nordtank mast cup anemometers (between) for the selected wind sector 250°-310° and the wind speed above 4 m/s and “turb”<0.1

We have used the inverse regression to correct the offset inherent to the LIDAR measurement. The regression applied to all LIDAR measurements are shown in Figure 118, and the profiles obtained with corrected wind speed for Z2 are shown in Figure 119.
Figure 118  Regression between the LIDAR Z2 at 30 m from the mast and the Nordtank mast cup anemometers (between) for the selected wind sector 250°-310° and the wind speed above 4 m/s and “turb”<0.1
Figure 119: Average wind speed profiles measured by the mast (blue), the LIDAR Z107 at the kink between the change of slope between Z2 and the mast (green) and the LIDAR Z2 at the shore corrected according to the regression given in Figure 6 (red), for 5 different wind speed bins: from 6 to 10 m/s. A narrow wind sector was selected: 260°-300°.
The profiles from Z2 are then closer to those from Z107, especially above 36m. Below 36m, the wind speed is higher at the kink (Z107) and at the shore (Z2) and higher at the mast than at the kink. This is in accordance with a WAsP calculation presented in [8.2] which shows that the wind speed at the shore is expected to be about 5% lower than at the mast location. It would be due to a speed up effect due to the slope. As Z107 is closer to the mast the wind speed is also closer to that measured at the mast.

From 36m and above, the influence of the ground does influence the wind speed and the profiles at the 3 locations are rather similar; except for the 2 lower wind speed bins, the wind speed measured by the mast is lower than that measured by both LIDARS.

8.4 References

8.5 Conclusions
The present analysis is by far neither completed nor exhaustive; factors shown in this report are influencing the effectiveness of the wind turbine to extract power. The nature of these factors is determined by the natural wind and the conditions defining it (surrounding area), and the wind turbine which utilizes the apparent wind. The amounts of data allow showing some specifics of the wind for this particular site in over the time span for the present study. The survey (barely also) indicates that other factors observed other places can impose other effects not necessarily matching with present observations, which makes the observation time too short. However, there is a major amount of existing data which should be used to compare the inflow and the rotor filtered output in terms of power. Such method should be based on analysis of the Reynolds stresses by means of mast instrumentation and by looking into the output of LIDARS describing turbulent flow features. As a contribution to inflow measurements, it is believed that the use of 5-hole pitot systems would benefit the analysis of improving power performance and the role of turbulence and wind characterisation.

In the report results from power measurements as well as structural signals have been shown. It has been shown on the basis of the driving force, that the potential of extracting kinetic energy with a rotor is large (and unexploited) at wind conditions just above cut-in. It is also suggested to conduct further analysis of the wind variability over a rotor disk via the flapwise bending moment signal, and with a variable that express the relative flapwise load ($\sigma_{My}/<My>$) over power ($\sigma_{P}/<P>$) efficiency factor.

The comparison of measurements and simulations shows, that the current model (structural and aerodynamic) agrees to a first order of comparison, but does not match the measured effects of natural turbulence experienced over the rotor disk in comparison with calculations, in particular with Figure 60.

A similar analysis to what was done for a MMW wind turbine was achieved here for a 500kW turbine. It shows that shear can also significantly influence the power curve measurement of a small wind turbine. Furthermore, the results coincide with those obtained for the MMW wind turbine. Using the equivalent wind speed in the power curve reduce the differences between the power curves obtained for different types of wind profiles, therefore decrease the scatter in the measured power curve.

8.6 Outlook
As mentioned more details are expected to show up by re-analysing the data and extending the data over a longer period to cover seasonal effects. Particular models containing a description as in [3.6] for a numerical approach of the wind characterisation would encourage comparing turbulence effects on a particular rotor, and the effects of rotor dynamics (rotor filter function).

On the measurement application point of view it would be very valuable from a research point of view to conduct inflow measurements with a 5-hole pitot system and one or two LIDAR systems simultaneously.
9 Acknowledgement

The Danish Ministry of Climate, Energy and Buildings, in particular the Danish Energy Agency are acknowledged for financial support. Also the Danish wind industry companies VESTAS Wind Systems A/S and Siemens Wind Power are appreciated for contributions and work throughout the project.

Many thanks to colleagues at DTU Wind Energy contributing with support and with discussions on the topics of IMPER, and technicians in the Test and Measurement program (TEM) for setting up the instrumentation- in particular Per Hansen for fixing the two LIDARS every time it was needed.

Andreas Waage Lopdrup Borgen, Engineering intern is greatly appreciated for his help in preparing plots and last revisions from the post processed data and simulations results.
Appendixes

Analysis results from post processing

In this annex, plots from the post processing of data as explained in 5.4 is presented. Each sensor is visualized by means of statistics representation in terms of wind speed at hub height, and typical time series with power spectra. Each sensor is represented with reference to the signal list.
Figure 3a. Sensor 3: Tower torsion top Mz_TI versus wind speed
Input files: mtk980rcs.dat, stat_3.dat
Figure 1b, Sensor 3: Tower torsion top Mz_IT versus time and frequency
Input files: m08.asc, m10.asc, m16.asc, m08.psd, m10.psd and m16.psd
Figure 23. Sensor 7: Tower bending bottom MIBEW versus wind speed
Input files: ntk568rcs.dat, stat_7.dat
Figure 2b. Sensor 7: Tower bending bottom MTH&M versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 3a, Sensor 111 tower bending bottom NDBS versus wind speed
Input files: ntk900rcs.dat, stat_11.dat
Figure 3b. Sensor 111 Tower bending bottom MIBBS versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 4a. Sensor 191 Electrical net power $P_e$ versus wind speed
Input files: ntk599rcs.dat, stat_19.dat
Figure 4b. Sensor 150: Electrical net power $P_e$ versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 5a. Sensor 191 tower acceleration 140 cm from top flange versus wind speed
Input files: mtk590rcs.dat, stat_19.dat
Figure 5b, Sensor 19: Tower acceleration 140 cm from top flange versus time and frequency
Input files: m08.asc, m10.asc, m16.asc, m96.psd, m10.psd and m16.psd
Figure 6a, Sensor 23: Tower acceleration 140 cm from top flange versus wind speed
Input files: ntk500rcs.dat, stat_23.dat
Figure 6b. Sensor 231: Tower acceleration 149 cm from top flange versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 7a, Sensor 27: Tower acceleration 80 cm from flange and 1st repos versus wind speed
Input files: ntk980rsc.dat, stat_27.dat
Figure 7b: Sensor 27: Tower acceleration 80 cm from flange and 1st repes versus time and frequency
Input files: m08.asc, m10.asc, m16.asc, m08.psd, m10.psd and m16.psd
Figure 8a, Sensor 311 lower acceleration 80 cm from flange and 1st repes versus wind speed
Input files: mtk590rcs.dat, stat_31.dat
Figure 8b, Sensor 311 Tower acceleration 80 cm from flange and 1st repos versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 9a. Sensor 351 Control:tip on/off 10_tip versus wind speed
Input files: ntk508rcs.dat, stat_35.dat
Figure 18a, Sensor 3U: Control; brake on/off $10_{\text{brk}}$ versus wind speed
Input files: ntk590res.dat, stat_3s.dat
Figure 11a, Sensor 45: Control/Generator on/off IU_gen versus wind speed
Input files: mtk500rce.dat, stat_45.dat
Figure 12a, Sensor 47: Control of constant-variable speed on/off vs wind speed
Input files: ntk500rcs.dat, stat_47.dat
Figure 13a. Sensor 51: Precipitation versus wind speed
Input files: ntk500rcs.dat, stat_51.dat
Figure 14a, Sensor 50: DNU/SIT# versus wind speed
Input files: ntk500rcs.dat, stat_50.dat
Figure 13a, Sensor 58: Net mast W/Net cos versus wind speed
Input files: mtk580ercs.dat, stat_58.dat
Figure 18a, Sensor 62: Metmast WTmet_cin versus wind speed
Input files: ntksrhcs.dat, stat_62.dat
Figure 17a, Sensor 67: Nett mast wind direction vs. wind speed
Input files: ntk500rcs.dat, stat_67.dat
Figure 10a. Sensor 71: Wind turbine nacelle position Yaw versus wind speed
Input files: ntk500ws.dat, stat_71.dat
Figure 10b, Sensor 71: Wind turbine nacelle position $\theta_{nw}$ versus time and frequency
Input files: m05.asc, m10.asc, m15.asc, m05.pcd, m10.pcd and m15.pcd
Figure 19a, Sensor 75: Rotor blade azimuth angle RotAz versus wind speed
Input files: ntk500ws.dat, stat_75.dat
Figure 19b, Sensor 75: Rotor blade azimuth angle \( \text{Rot}^{\text{azi}} \) versus time and frequency.

Input files: m06, m10, m16, m06, m10, m16, and m06, m10, m16.
Figure 26a, Sensor 79: Rotor shaft speed L55 Rot_Sp_L versus wind speed
Input files: ntk550rws.dat, stat_79.dat
Figure 20b, Sensor 79: Rotor shaft speed LOS RotSpL versus time and frequency
Input files: m66.asc, m10.asc, m16.asc, m66.psd, m10.psd and m16.psd
Figure 21a, Sensor 03: Rotor shaft speed N55 Rot_Sp_H versus wind speed
Input files: ntk550rws.dat, stat_03.dat
Figure 21b, Sensor 03: Rotor shaft speed HSS Rotor_Speed_H versus time and frequency
Input files: m96.asc, m10.asc, m16.asc, m96.psd, m10.psd and m16.psd
Figure 29a, Sensor 07: Wind speed $U_{3,mac}$ versus wind speed
Input files: ntk500wes.dat, stat_07.dat
Figure 29b, Sensor 07: Wind speed H3,Mac versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.psd, m10.psd and m15.psd
Figure 23a, Sensor 91: Acceleration gearbox Acc_GearX versus wind speed
Input files: ntk500ws.dat, stat_91.dat
Figure 23b, Sensor 91: Acceleration gearbox Acc_GTxx versus time and frequency
Input files: m08.asc, m10.asc, m15.asc, m08.psd, m10.psd and m15.psd
Figure 24a, Sensor 95: Acceleration gearbox Acc_Geary versus wind speed
Input files: ntk500rws.dat, stat_95.dat
Figure 25a, Sensor 99: Acceleration gearbox Acc_Gearz versus wind speed
Input files: ntk500ras.dat, stat_99.dat
Figure 25b, Sensor 99: Acceleration gearbox Acc,Gearz versus time and frequency
Input files: m06, acc, m10, acc, m15, acc, m96, psd, m10, psd and m16, psd
Figure 2Ga, Sensor 103: Acceleration near the leeward Acc_NacX versus wind speed
Input files: ntk500wrs.dat, stat_103.dat
Figure 2Gb, Sensor 102: Acceleration macelle leeward Acc_Naxx versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 27a, Sensor 107: Acceleration maxelle leeward Acc_Nacy versus wind speed
Input files: ntk500ws.dat, stat_107.dat
Figure 27b, Sensor 107: Acceleration nacelle leeward Acc_Nacy versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 28a, Sensor 111: Acceleration nacelle leeward Acc_Nac2 versus wind speed
Input files: ntk500wrs.dat, stat_111.dat
Figure 28b, Sensor 111: Acceleration nacelle leeward Acc_Nac1 versus time and frequency
Input files: m66.asc, m10.asc, m16.asc, m66.psd, m10.psd and m16.psd
Figure 29a, Sensor 115: Rotor shaft torsion into gearbox Shaft_lors2 L55 versus wind speed
Input files: ntk500wrs, dat, stat_115, dat
Figure 29b, Sensor 115: Rotor shaft torsion into gearbox Shaft_tors2 LSS versus time and frequency.
Input files: m06.asc, m10.asc, m16.asc, m06.pcd, m10.pcd and m16.pcd.
Figure 39a, Sensor 119: DRL_STATUS14 versus wind speed
Input files: ntk500pw, dat, stat_119.dat
Figure 31a, Sensor 123: Wind direction sensor WD_Nac_ref versus wind speed
Input files: ntk500wrs.dat, stat_123.dat
Figure 3b, Sensor 125: Wind direction nacelle WD_Nac_ref versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.psd, m10.psd and m15.psd
Figure S2a, Sensor 127: Wind direction anemometer MD.Rac.sig versus wind speed
Input files: ntk500res.dat, stat127.dat
Figure 32b, Sensor 127: Wind direction on turbine MD_Nac_cap versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 33a. Sensor 131: Wind direction nacelle versus wind speed
Input files: ntk860res.dat, stat_131.dat
Figure 33a, Sensor 131: Wind direction nose cone versus wind speed
Input files: ntk500rws.dat, stat_131.dat
Figure S3b, Sensor 131: Wind direction nacelle versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.pcd, m10.pcd and m16.pcd
Figure 34a, Sensor 135: Rotor shaft torsion L35 versus wind speed
Input files: ntk500rws.dat, stat_135.dat
Figure 24b, Sensor 135: Rotor shaft torsion L2S versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.pcd, m10.pcd and m15.pcd
Figure 35a, Sensor 139: Rotor shaft bending moment $y$ versus wind speed
Input files: ntk500wst.dat, stat_139.dat
Figure 25b, Sensor 139: Rotor shaft bending moment y versus time and frequency
Input files: m96.asc, m10.asc, m15.asc, m96.pcd, m10.pcd and m15.pcd
Figure 36a, Sensor 143: Rotor shaft bending moment Z versus wind speed
Input files: ntk500mws.dat, stat_143.dat
Figure 3Bb, Sensor 142: Rotor shaft bending moment z versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.pcd, m10.pcd and m16.pcd
Figure 37a, Sensor 147: Edge bending moment B1 r=2.1m versus wind speed
Input files: ntk500ws.dat, stat_147.dat
Figure 27b, Sensor 147: Edge bending moment B1 r=2.1m versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.pcd, m10.pcd and m16.pcd
Figure 30a, Sensor 151: Flap bending moment B1 r=2.1m versus wind speed
Input files: ntk500ws.dat, stat_151.dat
Figure 30b, Sensor 151: Flap bending moment B1 r=21m versus time and frequency
Input files: m06, acc, m10, acc, m16, acc, m06, pod, m10, pod and m16, pod
Figure 39a, Sensor 155: Edge bending moment B3 r=2,1m versus wind speed
Input files: ntk500rws.dat, stat_155.dat
Figure 29b, Sensor 195: Edge bending moment B3 r=2,1m versus time and frequency
Input files: m86.asc, m10.asc, m16.asc, m86.pcd, m10.pcd and m16.pcd
Figure 48a, Sensor 159: Flap bending moment B3 r=2.1m versus wind speed
Input files: ntk5000ws.dat, stat_159.dat
Figure 40b, Sensor 159: Flap bending moment B3 r=2.1m versus time and frequency
Input files: m06.acc, m10.acc, m16.acc, m06.psd, m10.psd and m16.psd
Figure 41a, Sensor 183: Edge bending moment B2 r=2.1m versus wind speed
Input files: ntk500fws.dat, stat_163.dat
Figure 41b, Sensor 102: Edge bending moment B2 r=2.1m versus time and frequency
Input files: m96,asc, m10,asc, m16,asc, m96,pcd, m10,pcd and m16,pcd
Figure 42a, Sensor 167: Flap bending moment B2 r=2.1m versus wind speed
Input files: ntk500w, dat, stat_167, dat
Figure 49b, Sensor 187: Flap bending moment B2 r=2,1m versus time and frequency. Input files: m05, acc, m10, acc, m15, acc, m05, pcd, m10, pcd and m15, pcd.
Figure 43a, Sensor 171: DNL_5497 versus wind speed
Input files: ntk5000ws.dat, stat_171.dat
Figure 44a, Sensor 175: Sonic status Sstat, Nozzle versus wind speed
Input files: ntk500res.dat, stat_175.dat
Figure 45a, Sensor 179: Sonic status Sheet, Mocelle versus wind speed
Input files: ntk500ws.dat, stat_179.dat
Figure 46a, Sensor 183: Sonic wind component Sx, Nacelle versus wind speed
Input files: ntk500ws.dat, stat_183.dat
Figure 4Gb, Sensor 182: Sonic wind component $S_X$, Nacelle versus time and frequency
Input files: n06.asc, n10.asc, n16.asc, n06.pcd, n10.pcd and n16.pcd
Figure 47a, Sensor 187: Sonic wind component SV, Nacelle versus wind speed
Input files: ntk500ws.dat, stat_187.dat
Figure 47b, Sensor 107: Sonic wind component SY in m/s versus time and frequency
Input files: m96.asc, m10.asc, m15.asc, m96.pcd, m10.pcd and m15.pcd
Figure 48a, Sensor 191: Sonic wind component S2, Nacelle versus wind speed
Input files: ntk500ws.dat, stat_191.dat
Figure 48b, Sensor 191: Sonic wind component S2, Nacelle versus time and frequency
Input files: m05.asc, m10.asc, m15.asc, m05.pcd, m10.pcd and m15.pcd
Figure 49a, Sensor 195: Sonic air temperature $ST$ (Nacelle) versus wind speed
Input files: ntk500wes.dat, stat_195.dat
Figure 49b, Sensor 195: Sonic air temperature ST, Nacelle versus time and frequency
Input files: m06, acc, m10, acc, m16, acc, m06, pod, m10, pod and m16, pod
Figure 59a, Sensor 199: Sonic horizontal flow direction Sdir, Maxelle versus wind speed
Input files: ntk500ws.dat, stat_199.dat
Figure 50b, Sensor 199: Sonic horizontal flow direction Sdir, Macelle versus time and frequency
Input files: m06,acc, m10,acc, m16,acc, m06,ped, m10,ped and m16,ped
Figure S1a, Sensor 200: Sonic wind speed vs. speed, Nacelle versus wind speed
Input files: ntk500ws.dat, stat_203.dat
Figure 51b, Sensor 209: Sonic wind speed $v$ and nacelle versus time and frequency.
Input files: m06.asc, m10.asc, m15.asc, m06.psd, m10.psd and m15.psd.
Figure 53a. Sensor 207: Sonic vertical flow angle Stilt, Macelle versus wind speed
Input files: ntk5860res.dat, stat_207.dat
Figure 52b, Sensor 207: Sonic vertical flow angle Stilt, Nacelle versus time and frequency
Input files: m06.acc, m10.acc, m15.acc, m06.pcd, m10.pcd and m15.pcd
Figure 53a, Sensor 211: Sonic status Sstat,52.5m versus wind speed
Input files: ntk520ws.dat, stat_211.dat
Figure 54a, Sensor 215: Sonic wind component $Sx, 52.5m$ versus wind speed
Input files: ntk500res.dat, stat_215.dat
Figure 54b. Sensor 215: Sonic wind component SX,52.5m versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.psd, m10.psd and m15.psd
Figure 55a, Sensor 219: Sonic wind component SV,52.5m versus wind speed
Input files: ntk520ws.dat, stat_219.dat
Figure 55b, Sensor 219: Sonic wind component SV_{50.5m} versus time and frequency
Input files: m96.asc, m10.asc, m16.asc, m96.psd, m10.psd and m16.psd
Figure 56a, Sensor 223: Sonic wind component S2,59.5m versus wind speed
Input files: ntk590wes.dat, stat_223.dat
Figure 50b, Sensor 229: Sonic wind component $\bar{u}_r$ versus time and frequency
Input files: n06.asc, n10.asc, n16.asc, n06.psd, n10.psd and n16.psd
Figure 57a, Sensor 227: Sonic air temperature ST,52.5m versus wind speed
Input files: ntk500ws.dat, stat_227.dat
Figure 57b, Sensor 297: Sonic air temperature ST,52.5m versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 59a, Sensor 231: Sonic wind speed 5speed, 52.5m versus wind speed
Input files: ntk500rws.dat, stat_231.dat
Figure 50b, Sensor 291: Sonic wind speed 3speed_p2, 52.5m versus time and frequency.
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd.
Figure 59a, Sensor 295: Sonic horizontal flow direction 5dir,52.5m versus wind speed
Input files: ntk500ws.dat, stat_295.dat
Figure 59b, Sensor 295: Sonic horizontal flow direction Sdir, 50.5m versus time and frequency
Input files: m86.asc, m10.asc, m16.asc, m86.pcd, m10.pcd and m16.pcd
Figure 60a, Sensor 239: Sonic vertical flow angle Stilt, 52.5m versus wind speed
Input files: ntk500rows.dat, stat_239.dat
Figure 60b, Sensor 299: Sonic vertical flow angle, Still, 5.2 m/s versus time and frequency
Input files: m06, acc, m10, acc, m16, acc, m06, pcd, m10, pcd and m16, pcd
Figure 61a, Sensor 249: Sonic status SStat,34,5m versus wind speed
Input files: ntk500ws.dat, stat_249.dat
Figure 62a, Sensor 247: Sonic wind component Sn,Sn,Sn versus wind speed
Input files: ntk500 ws.dat, stat_247.dat
Figure 62b, Sensor 247: Sonic wind component $s_{x_{94.5m}}$ versus time and frequency

Input files: m96.acc, m10.acc, m16.acc, m96.psd, m10.psd and m16.psd
Figure 63a, Sensor 251: Sonic wind component $u$, $v$, $w$, $m$ versus wind speed
Input files: ntk500wrs.dat, stat_251.dat
Figure 63b, Sensor 251: Sonic wind component SV_34.5m versus time and frequency
Input files: m06_ssc, m10_ssc, m15_ssc, m06_psd, m10_psd and m15_psd
Figure 64a, Sensor 255: Sonic wind component $S_z$ at 5m versus wind speed
Input files: ntk500rs.txt, stat_255.txt
Figure 64b, Sensor 255: Sonic wind component $S_2, S_4, S_5$ versus time and frequency
Input files: m06,acc, m10,acc, m16,acc, m06,pod, m10,pod and m16,pod
Figure 65a, Sensor 259: Sonic air temperature ST,24.5m versus wind speed
Input files: ntk500ws.dat, stat_259.dat
Figure 65b, Sensor 259: Sonic air temperature ST, 24.5m versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.pcd, m10.pcd and m16.pcd
Figure 66a, Sensor 283: Sonic wind speed 5 speed, 94.5m versus wind speed
Input files: ntk500wsp, stat_263.dat
Figure 6B, Sensor 202: Sonic wind speed 5s, speed 94,5m versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.pcd, m10.pcd and m16.pcd
Figure 67a, Sensor 207: Sonic horizontal flow direction 5dir,34,5m versus wind speed
Input files: ntk500rws.dat, stat_207.dat
Figure 67b, Sensor 207: Sonic horizontal flow direction Sdir, 34.5m versus time and frequency
Input files: m06, acc, m10, acc, m15, acc, m06, ped, m10, ped and m15, ped
Figure 68a, Sensor 271: Sonic vertical flow angle $\text{Stilt34.5m versus wind speed}$

Input files: ntk500res.dat, stat_271.dat
Figure 69b, Sensor 271: Sonic vertical flow angle Still,34,5m versus time and frequency
Input files: m06, acc, m10, acc, m15, acc, m06, pod, m10, pod and m15, pod
Figure 69a. Sensor 275: Sonic status SoStat,34.5m versus wind speed
Input files: ntk500ws.dat, stat_275.dat
Figure 70a, Sensor 279: Sonic wind component $Sx, 16.5m$ versus wind speed
Input files: ntk500ws.dat, stat_279.dat
Figure 70b, Sensor 279: Sonic wind component SX,16.5m versus time and frequency
Input files: m96.acc, m10.acc, m15.acc, m96.psd, m10.psd and m15.psd
Figure 71a, Sensor 203: Sonic wind component SY,16.5m versus wind speed
Input files: ntk500rws.dat, stat_203.dat
Figure 71b, Sensor 202: Sonic wind component $\gamma_{16.5m}$ versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 72b, Sensor 207: Sonic wind component $z_{16.5m}$ versus time and frequency
Input files: m96.asc, m10.asc, m15.asc, m96.psd, m10.psd and m15.psd
Figure 73a, Sensor 291: Sonic air temperature ST,10.5m versus wind speed
Input files: ntk500ws.dat, stat_291.dat

DTU Wind Energy Report E-0002(EN)
Figure 73b, Sensor 291: Sonic air temperature ST,16.5m versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.pcd, m10.pcd and m16.pcd
Figure 74a, Sensor 295: Sonic wind speed vs. speed, 16.5m versus wind speed
Input files: ntk500rws.dat, stat_295.dat
Figure 74b, Sensor 295: Sonic wind speed 5speed, 16.5m versus time and frequency
Input files: m96, acc, m10, acc, m15, acc, m96, pcd, m10, pcd and m15, pcd
Figure 75a, Sensor 299: Sonic horizontal flow direction 5dir,10.5m versus wind speed
Input files: ntk500WS.dat, stat_299.dat
Figure 75b, Sensor 299: Sonic horizontal flow direction Sdir,10.5m versus time and frequency.
Input files: m05.ace, m10.ace, m15.ace, m05.pcd, m10.pcd and m15.pcd
Figure 76a, Sensor 303: Sonic vertical flow angle Stilt, 16.5m versus wind speed
Input files: ntk500res.dat, stat_303.dat
Figure 70b, Sensor 302: Sonic vertical flow angle, still, 16.5m versus time and frequency
Input files: m05.asc, m10.asc, m15.asc, m05.pcd, m10.pcd and m15.pcd
Figure 77a, Sensor 307: DAU_L versus wind speed
Input files: ntk500rws.dat, stat_307.dat
Figure 70a, Sensor 311: Wind speed Netmwt 857m versus wind speed
Input files: ntk500wst.dat, stat311.dat
Figure 7.11: Wind speed Net mast 857m versus time and frequency
Input files: m86.asc, m10.asc, m16.asc, m86.ncd, m10.ncd and m16.ncd
Figure 79a, Sensor 315: Wind speed Matmap 85m, North versus wind speed
Input files: ntk500ws.dat, stat_315.dat
Figure 79b, Sensor 315: Wind speed N5m, North versus time and frequency
Input files: m06, asc, m10, asc, m16, asc, m06, psd, m10, psd and m16, psd
Figure 60a, Sensor 319: Wind speed Netmet 85m, South versus wind speed
Input files: ntk500ws.dat, stat_319.dat
Figure 60b, Sensor 319: Wind speed Netmast 85m, South versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 81a, Sensor 323: Wind speed Netmet 830m, North versus wind speed
Input files: ntk500wrs.dat, stat_323.dat
Figure 01b, Sensor 329: Wind speed Metmast 830m, North versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 32a. Sensor 327: Wind speed Netcom 830m, South versus wind speed
Input files: ntk500ws.dat, stat_327.dat
Figure 82b, Sensor 327: Wind speed Metmast 830m, South versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.psd, m10.psd and m15.psd
Figure 83a, Sensor 331: Difference Temperature 54-18 m versus wind speed
Input files: ntk560wes.dat, stat_331.dat
Figure 83b, Sensor 331: Difference Temperature 54-10 m versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m96,pcd, m10,pcd and m16,pcd
Figure 64a, Sensor 395: Temperature at 54m versus wind speed
Input files: ntk9500ws.dat, stat_395.dat
Figure 8.4b, Sensor 335: Temperature difference versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.psd, m10.psd and m15.psd
Figure 85a, Sensor 339: Air Barometric Pressure (m) versus wind speed
Input files: ntk500aws, dat, stat_339, dat
Figure 05b, Sensor 339: Air Barometric Pressure\(\pm\sigma\) versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 86a, Sensor 343: RUL 2 versus wind speed
Input files: ntk500wvs.dat, stat_343.dat
Figure 87a, Sensor 347: Wind speed Netmav 810m, North versus wind speed
Input files: ntk500rws.dat, stat_347.dat
Figure 87b, Sensor 347: Wind speed Netmøl 810m, North versus time and frequency
Input files: m86.asc, m10.asc, m16.asc, m86.psd, m10.psd and m16.psd
Figure 88a, Sensor 351: Wind speed Metmast 810m, South versus wind speed
Input files: ntk5000ws, dat, stat_351.dat
Figure 60b, Sensor 351: Wind speed Netmatt 810m, South versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 89a, Sensor 355: Wind speed Netmæl 827m, South versus wind speed
Input files: ntk500ws.dat, stat_355.dat
Figure S9b, Sensor 395: Wind speed Metmast 827m, South versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.psd, m10.psd and m15.psd
Figure 9b, Sensor 359: Wind speed Netmetr 845m, South versus wind speed
Input files: ntk500ws.dat, stat_359.dat
Figure 9B, Sensor 359: Wind speed Net mast 845m, South versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.psd, m10.psd and m15.psd
Figure 51a, Sensor 303: Air density versus wind speed
Input files: ntk5000ws.dat, stat_303.dat
Figure 51b, Sensor 303: Air density versus time and frequency.
Input files: m06.asc, m10.asc, m16.asc, m06.pcd, m10.pcd and m16.pcd.
Figure 32a, Sensor 367: Wind Direction versus wind speed
Input files: ntk500rws.dat, stat_367.dat
Figure S2b, Sensor 307: Wind Direction versus time and frequency
Input files: m05.asc, m10.asc, m15.asc, m05.pcd, m10.pcd and m15.pcd
Figure 93a, Sensor 371: Yaw Position, nacelle versus wind speed
Input files: ntk500rws.dat, stat_371.dat
Figure 9.3b, Sensor 371: Yaw Position, nacelle versus time and frequency
Input files: m68.asc, m60.asc, m64.asc, m68.pcd, m60.pcd and m64.pcd
Figure 94a, Sensor 375: Yaw.err versus wind speed
Input files: ntk500rpm.dat, stat_375.dat
Figure 9: Sensor 375: Yaw error versus time and frequency
Input files: m06.acc, m10.acc, m16.acc, m06.pcd, m10.pcd and m16.pcd
Figure 95a, Sensor 379: Edge bending mean removal Huel/HR versus wind speed
Input files: ntk500rs.dat, stat_379.dat
Figure 95b, Sensor 379: Edge bending mean removal Hell-PR versus time and frequency
Input files: m66.asc, m10.asc, m15.asc, m66.pcd, m10.pcd and m15.pcd
Figure S9a, Sensor 303: Rotor shaft moment mean removal MyR_HR versus wind speed
Input files: ntk500ws.dat, stat_303.dat
Figure 9Gb, Sensor 302: Rotor shaft moment mean removal $M_{ SHR}$ versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.pcd, m10.pcd and m15.pcd
Figure 97a, Sensor 307: Rotor shaft moment mean renewal M_{HR,HR} versus wind speed
Input files: ntk500ws.dat, stat_307.dat
Figure 97b, Sensor 307: Rotor shaft moment mean renewal about the HR versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.pcd, m10.pcd and m15.pcd
Figure 58a, Sensor 391: Rotor shaft speed L55 versus wind speed
Input files: ntk550rws.dat, stat_391.dat
Figure 90b, Sensor 391: Rotor shaft speed L55 versus time and frequency
Input files: m96.asc, m10.asc, m16.asc, m96,pod, m10,pod and m16,pod
Figure 99a, Sensor 395: Mechanical shaft power 155 versus wind speed
Input files: ntk500ws.dat, stat_395.dat
Figure 98b, Sensor 305: Mechanical shaft power L55 versus time and frequency
Input files: m305,acc,m10,acc,m15,acc,m305,pch,m10,pch and m15,pch
Figure 10Aa, Sensor 399: Rotor speed Omega_H3S versus wind speed
Input files: ntk500rws.dat, stat_399.dat
Figure 100b, Sensor 399: Rotor speed $\text{Omega_H2S}$ versus time and frequency
Input files: m00.asc, m10.asc, m15.asc, m05.pcd, m10.pcd and m15.pcd
Figure 101a, Sensor 403: Flap bending moment B2 r=2.1m versus wind speed
Input files: ntk500ws.dat, stat_403.dat
Figure 10b, Sensor 405: Flap bending moment B2 r=2.1m versus time and frequency
Input files: m06.asc, m10.asc, m15.asc, m06.psd, m10.psd and m15.psd
Figure 102a, Sensor 407: Rotor Tilt Moment versus wind speed
Input files: ntk500rws.dat, stat_407.dat
Figure 102(b), Sensor 407: Rotor Tilt Moment versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 103a, Sensor 411: Rotor Yaw Moment versus wind speed
Input files: ntk500wrs.dat, stat_411.dat
Figure 103b, Sensor 411: Rotor Yaw Moment versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 104a, Sensor 415: Tower Tilt bending moment versus wind speed
Input files: ntk500wrs.dat, stat_415.dat
Figure 10a,b. Sensor 415: Tower Tilt bending moment versus time and frequency
Input files: m06.asc, n10.asc, n16.asc, m06.pcd, m10.pcd and m16.pcd
Figure 105a, Sensor 419: Tower Roll bending moment versus wind speed
Input files: ntk500wrs.dat, stat_419.dat
Figure 105b, Sensor 419: Tower Roll bending moment versus time and frequency
Input files: m05, acc, m10, acc, m15, acc, m05, pcd, m10, pcd and m10, pcd
Figure 106a, Sensor 423: Wind speed Nelsast Ø52m,(South+North)/2 versus wind speed
Input files: ntk00rws.dat, stat_423.dat
Figure 10b, Sensor 429: Wind speed Metmast Ø52m, (South-North)/2 versus time and frequency
Input files: m06, asc, m10, asc, m15, asc, m06, psd, m10, psd and m15, psd
Figure 107a, Sensor 427: Wind speed Netmask (南+北)/(南+北)\(\frac{1}{2}\) versus wind speed
Input files: ntk500rws.dat, stat_427.dat
Figure 107b, Sensor 427: Wind speed Velmet 836M (South-North)/2 versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.pcd, m10.pcd and m16.pcd
Figure 100a, Sensor 431: Wind speed Netmean 81m, (South+North)/2 versus wind speed
Input files: ntk500wms.dat, stat_431.dat
Figure 108b, Sensor 401: Wind speed Net mast 810 m, (South-North)/2 versus time and frequency
Input files: m06, m10, m15, m16, pcd, m10, pcd and m16, pcd
Figure 109a, Sensor 495: Wind Shear exponent coefficient versus wind speed
Input files: ntk500hrs.dat, stat_495.dat
Figure 118a. Sensor 49: Edge bending moment B1 r=2.1m OR versus wind speed
Input files: ntk500res.dat, stat_49.dat
Figure 110b, Sensor 429: Edge bending moment B1 and M1, OR versus time and frequency
Input files: m06, acc, m10, acc, m16, acc, m06, psd, m10, psd and m16, psd
Figure 11a, Sensor 443: Edge bending moment B2 vs. Hub speed
Input files: ntk500res.dat, stat_443.dat
Figure 11b, Sensor 449: Edge bending moment B2 vs. M.C.OR versus time and frequency
Input files: m95.asc, m10.asc, m16.asc, m95.psd, m10.psd and m16.psd
Figure 112a, Sensor 447: Edge bending moment B3 r=2.1m OR versus wind speed
Input files: ntk500wrs.dat, stat_447.dat
Figure 112b, Sensor 447: Edge bending moment B3 vs. 1mOR versus time and frequency
Input files: m06.asc, m10.asc, m16.asc, m06.psd, m10.psd and m16.psd
Figure 113a, Sensor 451: Flap bending moment B1 r=2.1m m<sub>OR</sub> versus wind speed
Input files: ntk500zws.dat, stat_451.dat
Figure 113b, Sensor 451: Flap bending moment B1 r=2.1m OR versus time and frequency
Input files: m06, acc, m10, acc, m16, acc, m06, psd, m10, psd and m16, psd
Figure 114a, Sensor 455: Flap bending moment B2 r=2.1m. OR versus wind speed
Input files: ntk500rvs.dat, stat_455.dat
Figure 114b, Sensor 455: Flap bending moment B2 = 2.1m \_ OR versus time and frequency
Input files: m06.ace, m10.ace, m16.ace, m06.psd, m10.psd and m16.psd
Figure 115a, Sensor 459: Flap bending moment B3 r=2, m=OR versus wind speed
Input files: ntk500rms.dat, stat_459.dat
Figure 115b, Sensor 459: Flap bending moment B3 r=m OR versus time and frequency
Input files: m06,acc, m10,acc, m16,acc, m06,psd, m10,psd and m16,psd
Figure 116a, Sensor 463: Wind speed Helmet 810m/(South-North)/2 versus wind speed
Input files: ntk500wes.dat, stat_063.dat
Figure 116b, Sensor 405: Wind speed Helmet 810m, (South+North)/2 versus time and frequency
Input files: m05, sec, m10, sec, m15, sec, m05, pcd, m10, pcd and m15, pcd
Figure 117a, Sensor 467: Wind Direction versus wind speed
Input files: ntk500ws.dat, stat_467.dat
Figure 117b, Sensor 407: Wind Direction versus time and frequency.
Input files: m06.asc, m10.asc, m15.asc, m06.pcd, m10.pcd and m15.pcd.
Figure 119a, Sensor 405: Rain Flow Count HU1 versus wind speed
Input files: ntk500rws.dat, TN04_405.dat, TN06_405.dat, TN08_405.dat, TN10_405.dat
Figure 120a, Sensor 490: Rain Flow Count Mv21 versus wind speed
Input files: ntk500rws.dat, Tm04_490.dat, Tm06_490.dat, Tm08_490.dat, Tm10_490.dat, Tm12_490.dat
Figure 101a, Sensor 495: Rain Flow Count N21 versus wind speed
Input files: ntk500res, dat, TH04_495.dat, TH06_495.dat, TH08_495.dat, TH10_495.dat
Figure 122a, Sensor 500: Rain Flow Count Hz31 versus wind speed
Input files: ntk500rms.dta, ntn4_500.dta, ntn6_500.dta, ntn8_500.dta, ntn10_500.dta
Figure 129a. Sensor SRS: Rain Flow Count Hz [Hz] versus wind speed
Input files: ntk500ws.dat, TH04_505.dat, TH06_505.dat, TH08_505.dat, TH10_505.dat
Figure 124a, Sensor 510: Rainflow Count Hfwhm versus wind speed
Input files: ntk500wrs, dat, TM0_510, dat, TH0_510, dat, TH00_510, dat, TH00_510, dat
Figure 125a, Sensor 515: Rain Flow Count H-stress versus wind speed
Input files: ntk500ws.dat, TH04_515.dat, TH06_515.dat, TH08_515.dat, TH10_515.dat
Figure 126a, Sensor 529: Rain Flow Count HNF versus wind speed
Input files: ntk500ws.dat, TH04_529.dat, TH06_529.dat, TH08_529.dat, TH10_529.dat, TH18_529.dat
Figure 127a, Sensor 525: Rain Flow Count MtNF versus wind speed
Input files: ntk500ws.dat, TN04_525.dat, TN06_525.dat, TN08_525.dat, TN10_525.dat, TN12_525.dat
Figure 120a: Sensor 530: Rain Flow Count Nw,IB versus wind speed
Input files: ntk500wrs.dat, TN04_530.dat, TN06_530.dat, TN08_530.dat, TN10_530.dat
Figure 129b, Sensor 535: Rain Flow Count MY,IB versus wind speed
Input files: ntk500rws.dat, TH04_535.dat, TH06_535.dat, TH08_535.dat, TH10_535.dat, Th18_535.dat
Figure 130a, Sensor 540: Rain Flow Count Hz(IT) versus wind speed.
Input files: ntk500rws.dat, TH04_540.dat, TH05_540.dat, TH06_540.dat, TH07_540.dat, TH18_540.dat
Comparison of the LIDAR Z2 at the shore and the Nordtank mast cup anemometers (between 2011-05-31 and 2011-08-27) for the selected wind sector (230°-300°) and the wind speed above 4 m/s and "turb"<0.1 (1731 data)
Comparison of the LIDAR Z107 at the kink and the Nordtank mast cup anemometers (between 2011-06-10 and 2011-07-12) for the selected wind sector (230°-300°) and the wind speed above 4 m/s and “turb”<0.1 (1232 data)
List of IMPER output

2011:
Wagner, R. et al., Accounting for the speed shear in wind turbine power performance measurement, Wind Energy, 2011; 14:993--1004
Cariou et al: Analysis of vertical wind direction and speed gradients for data from the metmast at Høvsøre Risø-R-1733, May 2011

2010:
Aagård H. et al. DAN-AERO MW: Detailed aerodynamic measurements on a full scale MW wind turbine, EWEC 2010, Warsaw (PL) 20-23 Apr 2010
R. Wagner, et al.: Improvement of power curve measurement with LIDAR wind speed profiles, EWEC March 2010, Polen
Wagner R. Accounting for the speed shear in wind turbine power performance measurement, Risø-PhD-58(EN), 155pp, 2010
Gottschall J., et al: Characterization and categorization of vertical wind shear, Risø DTU 16-02-2010, Memo

2009:
Wagner R., Courtney M.S., Gottschall J. and P. Lindelöw-Marsden: MultiMW wind turbine power curve measurement using LIDAR (second Høvsøre campaign), Tech. report Risø-I-2954(EN), 2009
Wagner, R, Courtney, M, Results of the first measurement campaign using remote sensing instruments for multi MW wind turbine power curve measurement at Høvsøre, Draft report Jan 09
Anoniou I, Pedersen S M, The method uncertainty: Wind speed at hub height. Presentation at IEC symposium Seattle Jan- 09

2008:
Mikkelsen, T.: A forward looking LIDAR ZephIR CW


2007:

2006:
Kick-off meeting 16-6-2006 at Risø

Overview of sensor and transmitter

Table 6: Sensor and transmitter description 35 Hz sampling

<table>
<thead>
<tr>
<th>Measurement description</th>
<th>Sensor</th>
<th>Signal type</th>
<th>Conversion principle</th>
<th>Transmitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind speed at hub height-18m</td>
<td>RISØ cup anemometer P2546A with Reed relay</td>
<td>Digital</td>
<td>Direct counting of pulses and pulse pr rpm</td>
<td>Risø P2858A DAU Configured to periodic time measurement</td>
</tr>
<tr>
<td>Wind speed at hub height-9m</td>
<td>RISØ cup anemometer P2546A with Reed relay</td>
<td>Digital</td>
<td>Direct counting of pulses and pulse pr rpm</td>
<td>Risø P2858A DAU Configured to periodic time measurement</td>
</tr>
<tr>
<td>Wind speed at hub height 36m</td>
<td>RISØ cup anemometer P2546A with Reed relay</td>
<td>Digital</td>
<td>Direct counting of pulses and pulse pr rpm</td>
<td>Risø P2858A DAU Configured to periodic time measurement</td>
</tr>
<tr>
<td>Measurement</td>
<td>Sensor Type</td>
<td>Measurement Type</td>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>--------------------------------------</td>
<td>-------------------------------------------</td>
<td>----------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Wind speed at hub height +9m</td>
<td>RISØ cup anemometer P2546A</td>
<td>Digital</td>
<td>Direct counting of pulses and pulse pr rpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with Reed relay</td>
<td></td>
<td>Risø P2858A DAU configured to periodic time measurement</td>
<td></td>
</tr>
<tr>
<td>Wind speed at hub height +18m</td>
<td>RISØ cup anemometer P2546A</td>
<td>Digital</td>
<td>Direct counting of pulses and pulse pr rpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with Reed relay</td>
<td></td>
<td>Risø P2858A DAU configured to periodic time measurement</td>
<td></td>
</tr>
<tr>
<td>Wind speed at hub height +21m</td>
<td>RISØ cup anemometer P2546A</td>
<td>Digital</td>
<td>Direct counting of pulses and pulse pr rpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with Reed relay</td>
<td></td>
<td>Risø P2858A DAU configured to periodic time measurement</td>
<td></td>
</tr>
<tr>
<td>Wind speed, direction and temperature at 16.5magl</td>
<td>Sonic METEK USA 1</td>
<td>Digital</td>
<td>Measuring speed of travel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RS485 to RS232 converter</td>
<td></td>
</tr>
<tr>
<td>Wind speed, direction and temperature at 34.5magl</td>
<td>Sonic METEK USA 1</td>
<td>Digital</td>
<td>Measuring speed of travel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RS485 to RS232 converter</td>
<td></td>
</tr>
<tr>
<td>Wind speed, direction and temperature at 52.5magl</td>
<td>Sonic METEK USA 1</td>
<td>Digital</td>
<td>Measuring speed of travel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RS485 to RS232 converter</td>
<td></td>
</tr>
<tr>
<td>Air barometric pressure 2 magl</td>
<td>VAISSALA PTB100B Pressure sensitive vessel with position gauge</td>
<td>Analogue</td>
<td>Measuring of gauge position</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>LED Light array</td>
<td>Digital</td>
<td>Blockage of light array path</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LED circuit</td>
<td></td>
</tr>
<tr>
<td>Position of nacelle</td>
<td>Resistor with gearbox attached to yaw drive</td>
<td>Analogue</td>
<td>Measuring on resistive path</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Voltage divider</td>
<td></td>
</tr>
<tr>
<td>Position of rotor</td>
<td>Inductive sensor on low speed shaft together with inductive sensor on high speed shaft with 6 holes</td>
<td>Digital</td>
<td>Dampening of transistor oscillations due to presence of metal provides pulse</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risø P2858A DAU configured to position measurement</td>
<td></td>
</tr>
<tr>
<td>Rotor shaft speed low speed</td>
<td>Inductive sensor one pulse/rev</td>
<td>Digital</td>
<td>Dampening of transistor oscillations due to presence of metal provides pulse</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risø P2858A DAU configured to periodic time measurement</td>
<td></td>
</tr>
<tr>
<td>Rotor shaft speed high speed</td>
<td>Inductive sensor with 6 pulses/rev</td>
<td>Digital</td>
<td>Dampening of transistor oscillations due to presence of metal provides pulse</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risø P2858A DAU configured to periodic time measurement</td>
<td></td>
</tr>
<tr>
<td>Wind speed nacelle</td>
<td>RISØ cup anemometer P2546A</td>
<td>Digital</td>
<td>2 magnets on turning shaft controls the contact closure timings of the relay per revolution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with Reed relay</td>
<td></td>
<td>Risø P2858A DAU configured to periodic time measurement</td>
<td></td>
</tr>
<tr>
<td>Wind Direction nacelle</td>
<td>Vector Wind vane F2819A</td>
<td>Analogue</td>
<td>Measuring on resistive path relative to one full turn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Voltage divider</td>
<td></td>
</tr>
<tr>
<td>Flap-wise bending root moment #1</td>
<td>Micro Measurement Strain Gauge CEA-06-250A-350</td>
<td>Analogue</td>
<td>Semiconductor foil subjected to resistive change due to bending</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RisøP2912B SG amplifier</td>
<td></td>
</tr>
<tr>
<td>Edge-wise bending root moment #1</td>
<td>Micro Measurement Strain Gauge CEA-06-250A-350</td>
<td>Analogue</td>
<td>Semiconductor foil subjected to resistive change due to bending</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risø P2912B SG amplifier</td>
<td></td>
</tr>
<tr>
<td>Rotor shaft torque</td>
<td>Micro Measurement Strain Gauge CEA-06-W250C-350</td>
<td>Analogue</td>
<td>Semiconductor foil subjected to resistive change due to twisting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risø P2912B SG amplifier</td>
<td></td>
</tr>
<tr>
<td>Main shaft bending moment X</td>
<td>Micro Measurement Strain Gauge CEA-06-250A-350</td>
<td>Analogue</td>
<td>Semiconductor foil subjected to resistive change due to bending</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risø P2912B SG amplifier</td>
<td></td>
</tr>
<tr>
<td>Main shaft bending moment Y</td>
<td>Micro Measurement Strain Gauge CEA-06-250A-350</td>
<td>Analogue</td>
<td>Semiconductor foil subjected to resistive change due to bending</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risø P2912B SG amplifier</td>
<td></td>
</tr>
<tr>
<td>Tower top torsion</td>
<td>Micro Measurement Strain Gauge CEA-06-W250C-350</td>
<td>Analogue</td>
<td>Semiconductor foil subjected to resistive change due to twisting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risø P2912B SG amplifier</td>
<td></td>
</tr>
<tr>
<td>Tower bottom bending</td>
<td>Micro Measurement Strain Gauge CEA-06-250C-350</td>
<td>Analogue</td>
<td>Semiconductor foil subjected to resistive change due to twisting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risø P2912B SG amplifier</td>
<td></td>
</tr>
<tr>
<td>Moment</td>
<td>Measurement</td>
<td>Signal Type</td>
<td>Description</td>
<td>Amplifier/Transformer</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>X</td>
<td>Tower bottom bending moment</td>
<td>Micro Measurement Strain Gauge CEA-06-250UW-350</td>
<td>Analogue</td>
<td>Semiconductor foil subjected to resistive change due to bending</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Camille Bauer 502-34F1 Z291 0090 61 Watt converter, cl 05</td>
<td>Analogue</td>
<td>Time division multiplier principle of 3 voltage and 3 current signals</td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
<td>3 Garre G30/20 cl. 01 Current transformers 500/1</td>
</tr>
<tr>
<td>Tip deployment indicator</td>
<td>Via Controller electronics</td>
<td>Digital</td>
<td>Non-potential hazardous NPN signal amplifier</td>
<td>Risø P2858A DAU Configured to status measurement</td>
</tr>
<tr>
<td>Brake activation indicator</td>
<td>Via Controller electronics</td>
<td>Digital</td>
<td>Non-potential hazardous NPN signal amplifier</td>
<td>Risø P2858A DAU Configured to status measurement</td>
</tr>
<tr>
<td>Generator mode indicator</td>
<td>Via Controller electronics</td>
<td>Digital</td>
<td>Non-potential hazardous NPN signal amplifier</td>
<td>Risø P2858A DAU Configured to status measurement</td>
</tr>
<tr>
<td>Operations mode indicator</td>
<td>Via Controller electronics</td>
<td>Digital</td>
<td>Non-potential hazardous NPN signal amplifier</td>
<td>Risø P2858A DAU Configured to status measurement</td>
</tr>
</tbody>
</table>
DTU Wind Energy is the largest research centre for wind energy worldwide with more than 230 staff members, including 150 academic staff members and nearly 60 PhD students. The department is composed of the former Wind Energy Division at Risø DTU, two groups from DTU Mechanical Engineering with focus on fluid dynamics and composite mechanics and two groups from the Materials Research Division at Risø DTU with focus on composite materials and metallic materials.