A Parametric study of an Ankle-Foot Orthosis

i Skorini, Ragnhild; Mikkelsen, Lars Pilgaard; Løgstrup Andersen, Tom; Falkenman, Lars

Publication date:
2010

Citation (APA):
A Parametric study of an Ankle-Foot Orthosis

R. í Skorini, L.P. Mikkelsen, T.L. Andersen, Materials Research Division, Risø DTU, Roskilde
Lars Falkenman, Ortopæd Ingeniørerne, Roskilde

Drop foot can be defined as an impairment or lack of function ankle and toe dorsiflexors. One treatment for drop foot is to wear an Ankle-Foot Orthosis (AFO). The aim of this study is optimize the material selection for an AFO. A person specific AFO was made. Based on 3D-scan of the AFO, a full 3-D finite element model of the AFO was built up in the commercial finite element code Abaqus. A prescribed displacement was applied to the upper part of the AFO to simulate normal gait. Failure strain criteria were defined for the rod reinforcement material. The reinforcement material was directed along the rods of the AFO. Based on the simulations, regions with predicted material failure can be identified.

Model development

Results

Failure criteria:

\[L_F = \max \left(\frac{\varepsilon_{11}}{\varepsilon_c}, \frac{\varepsilon_{22}}{\varepsilon_c}, \frac{\varepsilon_{12}}{\varepsilon_c} \right) < 1.0 \]

MSTRN values > 1 predict material failure

STL representation of whole model

Prescribed displacement

AFO production

Person wearing AFO

AFO prepared for 3D scan

S_{11} for carbon UD reinforcement

MSTRN values for carbon UD reinforcement

MSTRN values for rotated carbon reinforcement

Conclusion

The finite element method is found to be a strong tool improving the material selection process used in a biomechanical device. Based on simulations, a large number of expensive trial and error iterations can be avoided.