Petrophysical properties of greensand as predicted from NMR measurements

Hossain, Zakir; Grattoni, Carlos A.; Solymar, Mikael; Fabricius, Ida Lykke

Published in:
Petroleum Geoscience

Link to article, DOI:
10.1144/1354-079309-038

Publication date:
2011

Citation (APA):
Petrophysical properties of greensand as predicted from NMR measurements

Zakir Hossain*¹, Carlos A. Grattoni², Mikael Solymar³ and Ida L. Fabricius¹

¹Department of Environmental Engineering
Technical University of Denmark, Miljøvej, Building 113, DK-2800 Lyngby, Denmark.

zaho@env.dtu.dk (Zakir Hossain), ilfa@env.dtu.dk (Ida L. Fabricius)

²Rock Deformation Research Ltd, School of Earth and Environment
University of Leeds, Leeds LS2 9JT, UK, c.a.grattoni@leeds.ac.uk

³Statoil ASA, Oslo, Norway, miso@StatoilHydro.com

*Corresponding author (e-mail: zaho@env.dtu.dk)

Number of words of text: 7634
Number of references: 36
Number of tables: 2
Number of figures: 13
Abstract

Nuclear magnetic resonance (NMR) is a useful tool in reservoir evaluation. The objective of this study is to predict petrophysical properties from NMR T2 distributions. A series of laboratory experiments including core analysis, capillary pressure measurements, NMR T2 measurements and image analysis were done on sixteen greensand samples from two formations in the Nini field of the North Sea. Hermod Formation is weakly cemented, whereas Ty Formation is characterized by microcrystalline quartz cement. The surface area measured by BET method and the NMR derived surface relaxivity are associated with the micro-porous glauconite grains. The effective specific surface area as calculated from Kozeny’s equation and as derived from petrographic image analysis of Backscattered Electron Micrograph’s (BSE), as well as the estimated effective surface relaxivity is associated with macro-pores. Permeability may be predicted from NMR by using Kozeny’s equation when surface relaxivity is known. Capillary pressure drainage curves may be predicted from NMR T2 distribution when pore size distribution within a sample is homogeneous.

Keywords: Greensand, glauconite, porosity, permeability, capillary pressure, NMR
Greensands are glauconite bearing sandstones composed of a mixture of stiff clastic quartz grains and soft glauconite grains. Glauconite grains are porous and composed of aggregates of iron-bearing smectitic or illitic clay. Porosity is thus found at two scales: macro-porosity between grains and micro-porosity within grains (Fig. 1). Greensand petroleum reservoirs occur world-wide, e.g. the mid-Cretaceous Safaniya Sandstone Member in Saudi Arabia (Cagatay et al. 1996), the Cretaceous Mardi Greensand in Australia (Hocking et al. 1988), the Lower Cretaceous Glaucolithic sandstone in Alberta, Canada (Tilley & Longstaffe 1984), the Upper Cretaceous Shannon sandstone in Wyoming, USA (Ranganathan & Tye 1986), a lower Cretaceous Greensand offshore Ireland (Winn 1994) and a late Paleocene Greensand in central part of the North Sea (Slot-Petersen et al. 1998). However, evaluation of greensand reservoirs has challenged geologists, engineers and petrophysicists. Glauconite has an effect on porosity, permeability and elastic properties of reservoir rocks (Diaz et al. 2003). Glauconite is also ductile (Ranganathan & Tye 1986) so it can cause non-elastic deformation of greensand (Hossain et al. 2009) and affect the reservoir quality. Greensands generally show low resistivity in the reservoir zone due to the large amount of bound water in the glauconite, yet free hydrocarbons can be produced because glauconite rather than being pore-filling is part of the sand grain framework (Slot-Petersen et al. 1998). Core analysis of greensand thus shows a poor relationship between porosity and permeability. Furthermore, greensand paramagnetic glauconite or pore filling berthierine may induce magnetic gradients on the pore level causing the NMR T2 relaxation time to be shortened dramatically (Rueslåtten et al. 1998).
Nuclear Magnetic Resonance (NMR) is a non-invasive technique, and NMR measurements on reservoir core samples are done to obtain an improved interpretation of logging data. NMR measures the net magnetization of a hydrogen atom (^1H) in the presence of an external magnetic field. Hydrogen has a relatively large magnetic moment and is abundant in both water and hydrocarbons in the pore space of a sedimentary rock. NMR spectrometry involves a series of manipulations of the hydrogen protons found in fluids. A measurement sequence starts with proton alignment to a magnetic field followed by spin tipping, and decay. The quantities measured include signal amplitude which is proportional to the number of hydrogen nuclei and decay, also called relaxation time (Kenyon et al. 1995). Longitudinal relaxation time (T₁) measures the decay of spin alignment; transverse relaxation time (T₂) measures the decay of precession. Although T₁ measurements are more common in the literature, they are more time consuming than T₂ measurements. Hence, pulsed NMR logging tools preferentially measure T₂ for faster logging speeds (Straley et al. 1997). NMR transverse relaxation (T₂) of fluids confined in a porous rock is affected by pore surface, by the bulk relaxation process in the fluid and additionally by dephasing in case of molecular diffusion. T₂ may be expressed by the fundamental equation governing the NMR relaxation spectrum (Coates et al. 1999):

\[
\frac{1}{T_2} = \frac{1}{T_{2,\text{Surface}}} + \frac{1}{T_{2,\text{Bulk}}} + \frac{1}{T_{2,\text{Diffusion}}}
\]

Surface relaxation (T₂Surface) is the dominating mechanism in porous media, controlled by pore surface area. The relation between NMR relaxation and pore surface area results
from strong interaction between the protons and the surface because the surface relaxivity \((\rho) \) causes rapid alignment of hydrogen protons on the pore wall, perhaps only a monolayer or two thick, while protons in the remaining fluid decay through itself (bulk relaxation), which is much slower (Howard et al. 1993). Bulk relaxation \((T_{2\text{Bulk}}) \) is thus significantly smaller than the surface relaxation and so where relaxation of diffusion \((T_{2\text{Diffusion}}) \) is slow, the relaxation \(\left(\frac{1}{T_2} \right) \) may be related to surface relaxivity and surface to volume ratio of pores \((S_p) \):

\[
\frac{1}{T_2} = \rho_2 S_p
\]

NMR measurements provide information about the pore structure \((S_p) \), the amount of fluid in-situ and interactions between the pore fluids and surface of pores. Thus, laboratory NMR measurements can be used to obtain porosity and correlate pore size distribution, clay bound water, and to estimate permeability and potentially predict capillary pressure curves from longitudinal relaxation time \((T_1) \) and transverse relaxation time \((T_2) \) distribution (Kenyon 1997). Numerous authors have explored the link between NMR measurements and petrophysical properties, e.g. the wettability investigation by NMR measurements by Al-Mahrooqi et al. (2003, 2006).

Porosity is one of the key parameter for hydrocarbon reservoir evaluation, and NMR is an effective tool to determine the porosity. However, several authors reported that there exist
significant differences between NMR porosity and core analysis porosity. Factors influencing the T_2 measurements include paramagnetic minerals in the reservoir rock which may cause $T_2\text{Diffusion}$ and hence reduce the T_2 relaxation time (Xie et al. 2008). Additionally, iron and other paramagnetic minerals affect the surface relaxivity and produce a shift of the relaxation distribution to shorter times (Dodge et al. 1995). Rueslåtten et al. (1998) studied NMR of iron-rich sandstone from the North Sea and found a detrimental effect of iron bearing minerals on porosity estimation by NMR T_2.

Specific surface area is another significant petrophysical parameter for understanding the physics of porous media and for permeability prediction. It was never fully integrated into standard or special core analysis programs due to lack of petrophysical understanding and concepts for correct evaluation (Riepe 1998). Nitrogen adsorption methods (BET) yield high specific surface value as nitrogen enters the pores in the sample. By using image analysis to determine the specific surface area, usually a much smaller value is derived, and the value depends upon the resolution (Solymar et al. 2003). The results of different methods reflect the different properties of pores at different scales. By using a high resolution BET surface or a highly smoothed surface derived from image analysis, the calculated permeability can be varied several orders of magnitude (Riepe 1998). This is a concern because specific surface plays a vital role in understanding and calibrating the T_2 spectra by estimating surface relaxivity (equation (2)).
NMR relaxation is thus not only affected by the pore dimensions but also by the relaxivity of the rock surface. Quantitative knowledge of the surface relaxivity is needed when T_2 distributions are interpreted. Surface relaxivity is required in order to convert T_2 distribution into specific surface area, to calculate permeability and to convert T_2 time to capillary pressure curves. However, to measure surface relaxivity directly is not easy. Surface relaxivity may be estimated by scaling the normalized capillary pressure curve to the normalized T_2 distribution (Kleinberg 1996); or by comparing NMR T_2 distributions to specific surface area from nitrogen BET adsorption (Hidajat et al. 2002). Alternatively, it can be estimated by comparing NMR pore size distribution to pore size distribution from image analysis of thin sections (Howard et al. 1993; Kenyon 1997). Kleinberg (1996) concluded that the NMR effective specific surface area is closely associated with hydraulic radius of the sedimentary rock and calculated effective surface relaxivity from capillary pressure curves and T_2 distribution.

Permeability is a difficult property to determine from logging data, yet it is essential for reservoir characterization. Laboratory measurements provide absolute permeability at core scale which could be different from reservoir permeability. NMR is the only tool that attempts to estimate *in-situ* formation permeability (Hidajat et al. 2002; Glover et al. 2006). One of the most popular NMR derived permeability correlations is the Timur-Coates formula (Coates et al. 1999), and is implemented as:
Hossain et al. Petrophysical properties of greensand as predicted from NMR

\[k_{NMR} = (C \phi)^m \left(\frac{FFI}{BFI} \right)^n \]

(3)

where, \(\phi \) is the porosity, \(FFI \) is the free fluid volume and \(BFI \) is the bound irreducible fluid, as determined from NMR measurements. Formation dependent constants \(C, m \) and \(n \) may be assumed to be 10, 4 and 2 for sandstones respectively, where NMR permeability, \(k_{NMR} \) is given in mD. However, this equation is simply an empirical derived relationship that links various NMR-derived parameters to permeability. Especially for diagenetically altered consolidated reservoir rocks, the complicated internal pore structures may not be described by this model, causing unrealistic permeability estimates, unless empirically calibrated parameters are used, which have no general physical meaning and thus are only valid for special facies types and for local investigations.

Timur-Coates formula also indicates that porosity or pore volume strongly controls the permeability together with the effective specific surface area as expressed by \(\frac{FFI}{BFI} \) in accordance with the equation of Kozeny (1927). For homogeneous sediments like chalk, the effective specific surface is equivalent to the one measured by nitrogen adsorption (BET) and Kozeny’s equation works well without introducing empirical factors (Mortensen et al. 1998). However, for less homogenous sediments, like greensand, we can calculate an effective surface area (\(Sp(Kozeny) \)) from permeability and porosity by using Kozeny’s equation. We infer that it is this effective surface that controls permeability.
Capillary pressure (P_c) curves can be determined only from core analysis, but NMR derived P_c curves provide a fast, cheap and non-destructive estimation. However, up to now, most authors have focused on the relation between T_2 distribution and P_c curves (Kleinberg 1996; Grattoni et al. 2003; Marschall et al. 1995; Volokitin et al. 1999) and the general conclusion is that, if the bulk relaxation and diffusion effects are ignored, a simple relationship between P_c and T_2 becomes:

$$P_c = \frac{K}{T_2} \quad (4)$$

where, K is an empirical scaling factor introduced to predict capillary pressure curves. However, several authors, e.g. Kleinberg (1996) concluded that the match between capillary pressure and NMR relaxation curves are not universal. The simple relationship (equation (4)) reflects that both the T_2 distribution and P_c curves are affected by pore structures but overlooks the difference between the physics of the processes. Kewan & Ning (2008) discussed that in a pore and throat model of the pore space, the capillary pressure is sensitive to the pore throat, whereas the NMR measures the pore body size. Thus, the technique gives same information only when there is a constant ratio between them.

The combination of conventional core analysis, such as Helium porosity, Gas permeability, specific surface area by BET and image analysis of thin sections micrographs is proven to be very effective in the evaluation of normal reservoir rocks.
However, for glauconite bearing greensand where a high proportion of micro-porosity in glauconite grains creates an uncertainty with respect to fluid distribution and fluid saturation, an accurate determination of petrophysical properties by using conventional core analysis is difficult (Rueslåtten et al. 1998). The objective of this study is to predict petrophysical properties from NMR T2 distributions which can be applied to in-situ well logging. Estimates of porosity, permeability, irreducible water saturation derived from NMR measurement were corrected with measurements from core analysis. The porosity obtained by using the different methods was compared for the greensand samples. The potential use of surface area data is also described and illustrated. Kozeny’s equation was used for NMR permeability prediction and Pc curves were estimated from NMR measurements.

Geological setting of Nini Field

The Nini field is located in Siri Canyon which is part of a larger system of submarine canyons in the Paleocene in the Norwegian-Danish Basin running in an E-W to NE-SW direction towards the Central Graben (Fig. 2) (Stokkendal et al. 2009). The Nini accumulation is defined by a combined structural and stratigraphic trap, the anticlinal structure being induced through salt tectonics. The reservoir consists of sands deposited in the Siri Fairway (Schiøler et al. 2007).

The glauconite bearing sandstone in the Nini field was recognized by stratigraphic work in Statoil in the mid-1990s (Schiøler et al. 2007). It is formally included in the Hermod
Formation and in the older Ty Formation. These Paleocene reservoir sands are characterized by glauconite rich (20-30 vol %) fine grained, well sorted sand, embedded in hemipelagic to pelagic mud- and marl-stones, in which both quartz grains and glauconite pellets are part of the load-bearing matrix. The greensand beds thus occur in a shale-sequence. In the Nini wells, the Hermod sand was found to be more massive, more porous and more permeable than Ty sand (Fig. 3).

Method

We studied sixteen one and half inch horizontal core plugs from the two greensand formations of the Nini-1 well (7 samples from Hermod Formation and 9 samples from Ty Formation). The samples had already been used for routine core analysis and were chosen so as to cover the range of variation in porosity (25%-40%) and air permeability (60 mD-1000 mD). All cores were cleaned from brine and hydrocarbons by soxhlet extraction with methanol and toluene prior to analysis. Thin sections were prepared from the end of each plug and material from the end trimmings were used for X-ray diffraction (XRD) and BET analysis.

Routine core analysis

Helium porosity (ϕ_H) of the samples was measured by the gas expansion method. Helium porosity is a good measure of total porosity, including porosity in clay minerals, as no pores are so small that Helium cannot enter. Buoyancy of the cores in brine (Archimedes)
was also used to determine bulk volume on a fully saturated sample and pore volume was calculated from grain density as measured by the gas expansion method. Complete saturation was verified by comparing porosity measured by Helium expansion and by Archimedes method. As porosity data from the two methods are within experimental error, all samples were assumed to be fully brine saturated.

Klinkenberg corrected permeability was derived from permeability at a series of nitrogen gas pressures. Specific surface area of the grain (S_g) was measured by BET method by using nitrogen gas adsorption. Specific surface of pores from BET method ($S_{p(BET)}$) was calculated by dividing S_g by porous fraction, (ϕ_H) and multiplying by grain fraction, (1-ϕ_H) as:

$$S_{p(BET)} = S_g \left(\frac{1-\phi_H}{\phi_H} \right) \rho_g$$ \hspace{1cm} (5)

where, ρ_g is grain density.

The effective bulk specific surface (S) was obtained from Klinkenberg permeability (k) and macro-porosity (ϕ) by using Kozeny’s equation (Kozeny 1927) as:

$$k = c \frac{\phi^3}{S^2}$$ \hspace{1cm} (6)

where, c is Kozeny’s factor which can be estimated from porosity via a simple model of linear 3D interpenetrating tubes (Mortensen et al. 1998):
According to equation (7), c increases from 0.15 to 0.25 as porosity increases from 0.05 to 0.5. Specific surface of pores from Kozeny’s equation ($Sp(Kozeny)$) can then be calculated:

$$Sp(Kozeny) = \frac{S}{\phi} \quad (8)$$

$$\frac{1}{Sp(Kozeny)}$$ is equivalent to hydraulic radius and thus should be related to capillary pressure and T_2 relaxation, so we base the remaining analysis on $Sp(Kozeny)$.

Capillary pressure

The capillary pressure may be expressed by the fundamental equation:

$$P_c = \frac{2\sigma \cos \theta}{r_c} \quad (9)$$

where, r_c is the radius of pore throat, σ is the surface tension and θ is the contact angle.

For water-wet conditions $\cos \theta$ becomes one, and in terms of specific surface of pore (Sp) equation (9) may be rewritten as:

$$P_c = S_p \sigma \quad (10)$$
Air brine drainage capillary pressure measurements were done on brine saturated greensand samples by using the porous plate method at room temperature. Initially each sample was saturated with simulated formation brine. The brine has a density of 1.06 g/cm³ and a viscosity of 1.054 cP. Irreducible water saturation (S_{wi}) including clay bound water was determined from capillary pressure curves and macro-porosity was calculated as porosity above irreducible water saturation (Fig. 4b).

Image analysis

Polished thin sections were prepared from all samples in a plane perpendicular to the flow direction during core analysis. A Philips XL40 Scanning Electron Microscope was used for acquisition of Back Scattered Electron (BSE) images. The images are 1024 x 1024 byte greyscale images with a pixel length of 1.78 µm. This magnification resolves the intergranular macro-porosity and leaves the micro-porosity unresolved. Each image was filtered to remove the noise and thresholded to create a binary image prior to analysis. Porosity determined in the images is called image porosity (ϕ_{image}). The image analysis procedure is sensitive to porosity threshold, so image porosity was determined when they are equal to macro-porosity determined from P_c measurements. The macro-porosity determined by image analysis is within a narrow range (±2.5 p.u.) obtained by image analysis.
along. The specific surface area or strictly speaking the specific perimeter ($S_{(image)}$) of
the solid grains was determined by using the method of Borre et al. (1995). According to
Underwood (1970) and Solymar & Fabricius (1999) the specific perimeter ($S_{(image)}$) may
be approximated to the 3-D specific surface (S) by:

$$S = \frac{4}{\pi} S_{(image)}$$ \hspace{1cm} (11)

Image specific surface of pores ($S_p/image$) is thus calculated by using equation (8) where
porosity is defined as macro-porosity determined from capillary pressure measurements.

NMR measurements

For NMR measurements all samples were saturated with brine (7.6 % NaCl). Complete
saturation was verified by using the dry weight, the saturated weight, grain volume by
Helium expansion, and brine density. All samples attained full brine saturation. All the
measurements were performed with the samples sleeved in PTFE heat shrink as several
were poorly consolidated. The weights and volumes of the heat shrink material were
accounted for in the measurements.

The laboratory NMR measurements were performed using a Resonance Instruments
MARAN 2 spectrometer at ambient pressure and 34°C at a proton resonance frequency of
2.2 MHz. T_2 relaxations was measured using Carr-Purcel-Meiboom-Gill (CPMG) pulse
sequence. The T$_2$ relaxation curves were measured by using a Recycle Delay (Repetition Time) of 10 sec, Number of Echos 8000, CPMG inter echo spacing (τ) 200 μs and 100 scans. The $\pi/2$ and π pulses were 14.8μs and 29.6μs, respectively.

NMR porosity of the fully saturated samples was determined by using the total signal amplitude of each sample (by summing the amplitudes of the T2 distribution) and known standard of similar diameter. In this case the reference standard was a sealed glass vial, containing 3cm3 of 50,000 ppm NaCl and 17cm3 of deuterium oxide. Deuterium oxide does not have an NMR signal therefore this reference standard has an equivalent porosity of 15%. The same number of scans was used for the reference and the sample. NMR porosity is then calculated using the, total signal amplitude, the bulk volume, hydrogen index of both plug and reference and the equivalent porosity of the reference.

For determining the macro-porosity and micro-porosity we need a cutoff value from the T$_2$ distribution. For two samples (one from Hermod and one from Ty), the T$_2$ cutoff was determined in the laboratory by obtaining the T$_2$ distribution at two saturations, fully brine saturated and at irreducible water saturation as determined from capillary pressure curves. The analysis of the air-water systems is relatively easy as there is no NMR response from the air and the relaxation time is exclusively due to the protons in the water. The cutoff time is defined as the relaxation time at the point where the cumulative porosity of the fully saturated sample equals the irreducible water saturation (Fig. 4a). As the T$_2$ cutoff is determined from capillary pressure equilibrium experiments includes capillary bound fluid and trapped in micro-pores. A single T$_2$ cutoff value for each
A formation was used for all samples of that formation. The cumulative porosity over the range $T_2 > T_{2\text{cutoff}}$ was the macro-porosity and below the range $T_2 < T_{2\text{cutoff}}$ was the micro-porosity or irreducible water saturation.

The NMR permeability model used in this work was obtained by combining equation (2), (6), and (8):

$$k = c \phi (T_2 \rho_2)^2$$ \hspace{1cm} (12)

In a similar way the capillary pressure NMR model was obtained combining equation (2) and (10):

$$P_c = \frac{\sigma}{\rho_2 T_2}$$ \hspace{1cm} (13)

The assumption of this model is that: 1- the pore structure controlling the T_2 distribution and capillary pressure is a bundle of capillary tubes and the drainage is controlled by the hierarchy of pore sizes; 2- the surface relaxivity is constant overall the sample; 3- diffusion relaxation is negligible.

Results

The Helium porosity of greensand ranges from 28 to 42 p.u. (porosity units) with a maximum uncertainty 1.5 p.u. (Table 1). Klinkenberg corrected permeability ranges from
60 to 940 mD (Table 2). Permeabilities of Hermod samples are larger than Ty samples and correlates with porosity, whereas Ty data are more scattered (Fig. 5).

Petrographic thin section analysis indicates that the studied Paleocene greensands are well to very well sorted, dominated by grains of quartz but also large volumes of glauconite (20-25 vol %) (Fig. 6). Samples from Hermod Formation contain glauconite grains of size between 100 and 200 µm, some glauconite grains are larger (300 to 400 µm) (Fig. 1a). Samples from Ty Formation contain glauconite grains of size between 100 and 150 µm, although some glauconite grains are larger (200 to 300 µm) (Fig. 1b). The grains are subangular to sub-rounded for the both Formations. Hermod Formation is only weakly cemented, whereas samples from Ty formation contain cement of berthierine or microcrystalline quartz cement resulting in relative in a low permeability (Table 2). In both formations XRD analyses of separated glauconite grains show the presence of some expanding layers in the predominantly illitic glauconite.

The capillary pressure was obtained assuming 72 mN/m for the brine surface tension. Capillary pressure curves show that for the higher permeability Hermod Formation samples, the P_c curves are shifted toward low irreducible water saturation, whereas P_c curves for the lower permeability Ty Formation samples are shifted toward high irreducible water saturation (Figs 7a, c). Irreducible water saturation from capillary pressure was obtained at P_c 100 psi, and varied between 25% and 42% of the total porosity (Table 2).
The NMR T₂ distributions are presented in graphical form for each sample and the population is expressed in porosity units in Figures 7b, d. All T₂ distributions are bimodal. Each T₂ time corresponds to a particular pore size. If the rock has a single pore size then instead of a broader distribution there will be a single vertical line. Thus broader distributions reflect greater variability in pore size. We have determined a time cutoff of 5.21 ms for the sample 1-4 from Hermod Formation and 3.68 ms for sample 1A-141 from the Ty Formation. The short relaxation time component in a T₂ distribution of a rock is attributed to the water in glauconite. For the present greensand samples a peak close to 1 ms should correspond to glauconite water, whereas all samples also present a second peak close to 100 ms that corresponds to movable fluid. Higher permeability Hermod Formation samples show larger amplitude in the movable fluid than samples from Ty Formation; whereas lower permeability bearing Ty Formation sample show slightly larger amplitude in capillary bound and glauconite water (Figs 7b, d).

Discussion

Porosity

Helium porosity, Archimedes porosity and NMR porosity are compared in Figure 8. Helium porosity is associated with the total porosity of the sample including micro-porosity in glauconitic and it shows the highest values among the three types of porosity data. However, Archimedes and NMR porosity should also in principle represent the total porosity of a sample, but could be lower if water saturation is below 100%. Although the
Archimedes porosity is close to Helium porosity, NMR porosity tends to be lower. Both macro-porosity and micro-porosity are underestimated by the NMR measurements (Figs 8c, d). The discrepancy between Archimedes porosity and NMR porosity could be due to several factors. First, NMR and Archimedes porosity depend on saturation condition of the sample. So we cannot rule out that during NMR measurement the saturation condition was lower than that at the Archimedes measurements. Second, paramagnetic iron-bearing minerals in reservoir rock may be an important factor influencing T2 measurements as shown by Dodge et al. (1995). The presence of paramagnetic ions increases the rate of relaxation of the hydrogen proton. This is expected for greensand because glauconite and berthierine are iron-bearing. These clay minerals have large surface area and high magnetic susceptibilities leading to large internal gradients and short T2 (Straley et al. 1997). Rueslåtten et al. (1998) illustrated the influence of chlorite (berthierine) and glauconite on the difference between Helium porosity and NMR T2 derived porosity (delta porosity) and found broad positive correlation between delta porosity and chlorite content, whereas they found no correlation with glauconite content. Thus they pointed to the detrimental effect of chlorite or berthierine on porosity estimated by NMR. However, we found only a vague negative correlation between delta porosity and bulk mineral composition (glauconite, clay coating and pores filling) (Fig. 8b).

Specific surface area

Specific surface area with respect to pore (S_p), determined by three methods are compared in Figure 10a. We found a large difference between the specific surface areas
as measured by BET method (\(Sp(BET)\), 76-141 µm\(^{-1}\)) and calculated by Kozeny’s equation (\(Sp(Kozeny)\), 0.27-0.95 µm\(^{-1}\)) and determined by image analysis (\(Sp(image)\), 0.32-0.46 µm\(^{-1}\)). Nitrogen adsorption has a very high resolution; therefore this method determines the specific surface of the total porosity, including micro-porosity. Based on the Kozeny’s equation, we estimated \(Sp(Kozeny)\) by using permeability determined on the cores and macro-porosity. \(Sp\) by image analysis depends on the resolution of the image (Solymar et al. 2003). However, \(Sp\) from image analysis at the present pixel size and \(Sp\) from Kozeny’s equation are in same order of magnitude which tells us that resolution of image is sufficient and pixel size is small enough to determine \(Sp\) by image analysis. The specific surface area of separated glauconite grains are in order of 1300-1600 µm\(^{-1}\), whereas the specific surface area of quartz grains is less than 1 µm\(^{-1}\). So rather than quartz grains, specific surface of glauconite grains are measured by BET method. Thus, \(Sp\) by BET method is mainly reflected by the micro-pores of glauconite grains and pore filling/lining clays, whereas \(Sp\) from Kozeny’s equation and image analysis is associated with effective surface and related to macro-porosity. We found that \(Sp\) measured by BET method is well correlated with fraction of glauconite plus pore filling clay minerals (Fig. 9c).

We found that irreducible water saturation ranges from 22% to 41% from capillary pressure measurements and from 23% to 36% from NMR measurements. Considering errors association with these two methods, irreducible water saturations are close to each other. The high value of irreducible water saturation is due to the high specific surface of glauconite. The micro-pores of glauconite remain brine filled even at a capillary pressure
of 100 psi. We found a positive correlation between irreducible water saturation determined from P_c and NMR with Sp determined from BET method (Figs 9a, b). In addition Figures 9a, b also show the tendency for low surface area samples to approach minimum irreducible water saturation and for high surface area samples to remain more saturated. A relationship between specific surface and irreducible water saturation has been noted by several authors e.g. Hamada et al. (2001) where authors reported an excellent correlation ($R^2=0.98$) between irreducible water saturation and specific surface of pores.

Surface relaxivity

We compare four ways of estimating surface relaxivity in Figure 10b. Equation (2) shows that surface relaxivity for NMR T_2 distribution is related to specific surface of pores. Thus in absence of laboratory data, surface relaxivity may be evaluated by comparing T_2 distributions with $Sp(BET)$, $Sp(Kozeny)$ or $Sp(image)$. This results in relaxivity value ranges in order of 2.7-4.2 µm/s from $Sp(BET)$, 7-58 µm/s from $Sp(Kozeny)$, and 10-35 µm/s from $Sp(image)$. As an alternative, we used P_c curves and found that a surface relaxivity of 20.4 µm/s for Hermod and of 28.4 µm/s for Ty Formation are needed to generate P_c curves from NMR measurements. The surface relaxivity estimated based on $Sp(BET)$ would be controlled by micro-porosity in glauconite. We found an average surface relaxivity by $Sp(BET)$ of 3.42 µm/s, which is close to the 3.3 µm/s for glauconite reported by Matteson et al. (1996). Surface relaxivity estimated from $Sp(Kozeny)$ and
Sp(image) also should be effective surface relaxivity as it was calculated from effective specific surface area.

Permeability

Kozeny’s equation (equation (12)) was used to predict permeability from NMR T$_2$ distributions. Before applying this equation we highlight the similarities and differences within T$_2$ distribution among samples (Fig. 11). The T$_2$ distribution of sample 1-18 peaks at longer time than for sample 1-6, thus the larger porosity of sample 1-18 is due to the larger pores which also cause higher permeability (Fig. 11a). The comparison of three samples with similar distributions at shorter times is shown in Figure 11b. When the larger peak (around 100 ms) becomes smaller and is shifted to larger times due to a small number of intermediate pores, there is a small increase of the number of larger pores. Thus, for these samples the permeability is not high although porosity is higher. We thus cannot use average T$_2$ time or final T$_2$ time in equation (12) for permeability calculation. So we modified the equation (12) by summing the total permeability among the T$_2$ distribution and only including the macro-porosity. Thus resulting:

\[k = c \phi \rho_2^2 \sum_{i=1}^{N} f_i (T_{2i})^2 \quad (14) \]
where, f_i is a fraction of the total amplitude of each T_{2i}. Kozeny factor c was calculated using equation (7).

The predicted permeability distribution obtained by using equation (14) is shown in Figures 11c, d. Below cutoff time, the amplitude of permeability is zero which means micro-porosity does not contribute to fluid flow. From cutoff time to 100 ms, the amplitude of permeability is small but above 100 ms the contribution of permeability increases.

Predicted permeability and measured permeability are compared in Figure 12a by using surface relaxivity from $Sp(Kozeny)$ (Average surface relaxivity for each depth interval), in Figure 12b by using surface relaxivity from $Sp(image)$, in Figure 12c by using surface relaxivity from equation (13), and in Figure 12d by using surface relaxivity from $Sp(BET)$. Predicted permeability is close to 1:1 line of measured permeability for case 1 and 2. The estimated permeability from Timur-Coates model is illustrated in Figure 12e. Predicted permeability using this model works rather well if we use $C=8.3$ which was optimized in a least-squares sense such that the sum of the squared error between the measured and predicted permeability is minimized. Predicted permeability from image analysis and measured permeability are compared in Figure 12f. Image permeability and NMR predicted permeability by using surface relaxivity from $Sp(image)$ are equal.

Capillary pressure curves
We applied the value of surface relaxivity of 20.3 µm/s and 28.4 µm/s for Hermod Formation and Ty Formation sample respectively to generate the capillary pressure curves directly from the T₂ distribution by using equation 13 (Fig. 13). Capillary pressure curves overlay each other for low permeability samples. However, we found deviation between the \(P_c \) NMR and \(P_c \) lab for the high permeability sample from Hermod Formation. A deviation is to be expected, because we assumed uniform surface relaxivity within a sample and ignored diffusion relaxation. The calculated surface relaxivity is shown in Figure 13e for a sample from Hermod Formation and in Figure 13f for a sample from Ty Formation. A good match between \(P_c \) curves from laboratory and NMR measurement is found when average surface relaxivity is equal to surface relaxivity applied to predict \(P_c \) curves from NMR. In contrast, we found deviation between \(P_c \) curves from laboratory and NMR measurements when average surface relaxivity is not equal to the surface relaxivity need to match \(P_c \) curves. This variation of surface relaxivity within the sample is probably due to the large pores and higher permeability in the greensands of Hermod Formation.

Conclusion

The objective of this study is to predict petrophysical properties from NMR T₂ distributions. Based on laboratory experiments and image analysis on sixteen greensand samples from the two formations in the Nini field of the North Sea, we found Hermod Formation is only weakly cemented, whereas samples from Ty formation contain cement.
of berthierine or microcrystalline quartz cement resulting in relatively lower permeability than Hermod samples.

We found that the total porosity measured by Archimedes method is close to Helium porosity, whereas NMR porosity tends to be lower. The discrepancy between Archimedes porosity and NMR porosity may be due to a combination of several factors, including the presence of glauconite grains in greensand.

This study shows that the surface area measured by BET method and the derived surface relaxivity are associated with the micro-porous glauconite grains. The effective surface area as calculated by Kozeny’s equation and as determined from petrographic image analysis of Backscattered Electron Micrographs and the estimated effective surface relaxivity is associated with macro-pores. We found that \(S_p \) measured by BET method is well correlated with fraction of glauconite plus pore filling clay minerals.

Irreducible water saturation in the studied greensands ranges from 22% to 41% and these high values are due to the high specific surface area of glauconite. The micro-pores of glauconite remain brine filled even at a capillary pressure of 100 psi.

We found that predicted permeability from NMR by using Kozeny’s equation agrees well when surface relaxivity is known. By using Timur-Coates model, predicting permeability works rather well if we optimize the constant to \(C = 8.3 \).
This study shows that predicted capillary pressure curves from NMR T$_2$ distribution overlay on measured capillary pressure curves for low permeability samples. The deviation between the P_c NMR and P_c lab for the high permeability samples is due to the contrasting relaxivity on the surface of quartz and glauconite.
Acknowledgements

Niels Springer and Hans Jørgen Lorentzen (GEUS, DK) are thanked for help with the core analysis. Sinh Hy Nguyen (DTU, DK) performed XRD and BET measurements, Hector Ampuero Diaz (DTU, DK) prepared polished thin sections. DONG Energy A/S is acknowledged for financial support.

Appendix

Nomenclature

\(BFV \) Bound fluid volume
\(C \) Formation dependent constant
\(c \) Kozeny factor
\(f_i \) Amplitude of each \(T_{2i} \)
\(FFI \) Free fluid volume
\(k \) Klinkenberg permeability,
\(K \) Scaling factor
\(S \) Specific surface area of bulk
\(S_g \) Specific surface area of grains
\(Sp \) Specific surface of pores
\(T_{2Bulk} \) Relaxation of fluids
\(T_{2Diffusion} \) Relaxation of molecular diffusion
\(T_{2Surface} \) Relaxation of surface
Greek symbols

\(\phi \) Porosity (fraction)

\(\rho \) Surface relaxivity

\(\tau \) Inter echo spacing.

Unit conversion

1 mD = 0.9869 \(10^{-15} \) m\(^2\)

1 psi = 6.89 kPa
References

Figure captions

Fig. 1. BSE images of greensand samples. (a) Sample 1-4 from Hermod Formation and (b) sample 1A-142 from Ty Formation. Scale bar is 200 µm. Q: quartz; Gl: glauconite; H: Heavy minerals, M: Mica; PF: pore filling clay minerals. Porosity, permeability and irreducible water saturation are 37 p.u., 530 mD and 26% for sample 1-4 and 29 p.u., 150 mD and 38% for sample 1A-142.

Fig. 2. Location map showing the position of the Nini-1 well used in this study (arrow). The margins of the Siri Canyon are shown by grey shading. An area of positive relief within the canyon is also shown by grey shading. G, Germany; N, Norway; NL, Netherlands; S, Sweden; UK, United Kingdom (Figure modified after Schiøler et al. 2007).

Fig. 3. Gamma ray, porosity and resistivity logs for wells Nini-1 (top) and Nini-1A (bottom). The glauconite bearing reservoir intervals (Hermod sand and Ty sand) have relatively low separation between neutron- and density porosity. Horizontal dashed lines indicate the studied core intervals. Core data are shown for reference. Permeability is higher in Hermod sand than in Ty sand.

Fig. 4: Macro-porosity and micro-porosity determination for sample 1-4 (a) from NMR T2 distribution (b) from the capillary pressure curve. The cumulative distribution for the fully saturated sample is compared to the cumulative distribution after centrifuging at 100
psi. The cutoff time which separates the T2 distribution into macro-porosity and micro-porosity is defined as the relaxation time at the point where the cumulative porosity of the fully saturated sample equals the irreducible water saturation. The dashed vertical line is shown a cutoff of 5.21 ms. The capillary pressure of 100 psi corresponds to a micro-porosity of 9.1%.

Fig. 5. Cross plot of macro-porosity from capillary pressure measurement and permeability. Samples from the Hermod sand have similar porosity and permeability, whereas the samples from Ty sand are more scattered. The reference lines represent equal specific surface of pores (Sp (Kozeny)) in μm$^{-1}$ as calculated by using Kozeny’s equation. The data indicate that Sp is lower in Hermod sand than in Ty sand.

Fig. 6. Bulk composition of investigated samples from Hermod and Ty Formations of the Nini Field. Mineral composition was determined by point counting of 500 points across each entire thin-section. Macro-porosity was determined by image analysis when porosity threshold is equal to macro-porosity determined from P_c measurements. Micro-porosity is the difference between Helium porosity and image porosity.

Fig. 7. (a), (c) Capillary pressure curves and (b), (d) NMR T2 distribution curves of greensand samples. (a) P_c curves of Hermod Formation samples are shifted toward low irreducible water saturation, whereas (c) the Ty Formation samples have relatively high irreducible water saturation. This pattern compares to the relatively high permeability of Hermod sand relative to the low permeability of Ty sand (Fig. 3). T2 distribution of all
samples shows two peaks. The peak close to 1 ms represents micro-porosity and the peak close to 100 ms represents macro-porosity.

Fig. 8. (a) Helium porosity, Archimedes porosity and NMR porosity of investigated samples. Helium porosity tends to be the highest, whereas NMR porosity is underestimated due to iron bearing minerals in greensand. (b) Cross plot of delta porosity (Archimedes porosity-NMR porosity) and minerals bulk composition (glauconite, pore filling clay and clay coating). Cross plots of (c) macro-porosity and (d) micro-porosity from NMR T2 distribution and capillary pressure curves.

Fig. 9. Correlation between specific surface of pores as measured by BET ($Sp (BET)$) and (a) irreducible water saturation as determined from NMR measurements, (b) irreducible water saturation as determined from capillary pressure measure as well as (c) clay minerals (glauconite, clay coating and pore filling clay) as percentage of bulk composition.

Fig. 10. (a) Specific surface area with respect to pore (Sp) determined by BET nitrogen adsorption ($Sp (BET)$), estimated from Kozeny’s equation ($Sp (Kozeny)$) and determined by image analysis of the BSE images ($Sp (image)$). (b) Surface relaxivity determined comparing T_2 distribution with $Sp (BET)$, $Sp (Kozeny)$, and $Sp (image)$. For two samples, surface relaxivity are also determined from capillary pressure versus NMR T_2 distribution.
Fig. 11. (a), (b) Porosity distribution and cumulative porosity for five greensand samples. (c), (d) Permeability distribution of five greensand samples obtained from Kozeny’s equation.

Fig. 12. Measured permeability versus NMR predicted permeability by using surface relaxivity from (a) $Sp(Kozeny)$, (b) $Sp(image)$, (c) $Sp(BET)$, (d) P_c versus NMR and (e) from Timur-Coates model. (g) Measured permeability versus predicted permeability from image analysis. Image permeability and NMR predicted permeability by using surface relaxivity from $Sp(image)$ are equal.

Fig. 13. Air Brine capillary pressure curves including saturation error compared with NMR derived capillary pressure including saturation error. Saturation error corresponds to the error associated with porosity measurements. The NMR derived capillary pressure curves are based on surface relaxivity value of 20.4 μm/s for Hermod Formation and 28.4 μm/s for Ty formation. Deviation between average surface relaxivity (solid line) and surface relaxivity for predicting P_c NMR (dashes line) are shown (e) for Hermod Formation and (f) for Ty Formation.
List of tables

Table 1. Core plug porosity data. Helium porosity was measured by Helium gas expansion, Archimedes porosity was measured by immersing, and NMR porosity was measured by the signal amplitude of T_2 measurements respectively. Archimedes macro-porosity and NMR macro-porosity were determined from capillary pressure curves and T_2 distributions respectively.

Table 2. Core plug data. Specific surface area of grains (SSA) was measured by BET method and effective specific surface of pores ($Sp(Kozeny)$) was calculated by using Kozeny’s equation. Image specific perimeter of pores ($Sp(image)$) was determined by image analysis by using the method of Borre et al. (1997). The cutoff time which separates the T_2 distribution into macro-porosity and micro-porosity is defined as the relaxation time at the point where the cumulative porosity of the fully saturated sample equals the irreducible water saturation.
Fig. 1

(a) (b)
Fig. 3

(a) Gamma ray (API units) vs. TVD (msl)
(b) Porosity (%) vs. TVD (msl)
(c) Resistivity (Ohm-m) vs. TVD (msl)
(d) Permeability (mD) vs. TVD (msl)

(e) Density porosity, Neutron porosity, Helium Porosity
(f)
(g)
(h)
Fig. 4

(a) NMR cumulative distribution (p.u.)

- T2 Cutoff
- Desaturated @ 100 psi
- Saturated

(b) Capillary pressure (psi)

- Micro-porosity @ 100 psi

Porosity (p.u.)

Irreducible water saturation @ 100 psi

Desaturated @ 100 psi

Saturated
Fig. 5

Klinkenberg permeability (mD) vs. Macro-porosity (p.u.) for different Sp values and Hermod and Ty Formations.
Fig. 7

(a) Capillary pressure vs. Saturation for Hermod and Ty formations.
(b) Normalized amplitude vs. T_2 for Hermod and Ty formations.
(c) Capillary pressure vs. Saturation for Hermod and Ty formations.
(d) Normalized amplitude vs. T_2 for Hermod and Ty formations.
Hossain et al. Figures

Fig. 9

(a) $R^2 = 0.73$, $n=16$

(b) $R^2 = 0.71$, $n=16$

(c) $R^2 = 0.68$, $n=16$
Fig. 10

(a) Specific surface area (m$^{-1}$) vs. different samples.

(b) Surface relaxivity (µm/s) vs. different samples.

- Sp (Kozeny)
- Sp (image)
- Sp (BET)
- Pc vs. NMR
Fig. 11

(a) 1-6, 1-18, 1-6 (cumulative), 1-18 (cumulative)

(b) 1-7, 1-25, 1-141, 1-7 (cumulative), 1-25 (cumulative), 1-141 (cumulative)

(c) 1-6 (Porosity), 1-18 (Porosity), 1-6 (Permeability), 1-18 (Permeability)

(c) 1-7 (Porosity), 1-25 (Porosity), 1-141 (Porosity), 1-7 (Permeability), 1-25 (Permeability), 1-141 (Permeability)
Fig. 12

(a) ρ_2 (Kozeny)

(b) ρ_2 (image)

(c) ρ_2 (Pc vs. NMR)

(d) ρ_2 (BET)

(e) Timur-Coates model

(f) ρ_2 (BET)
Fig. 13

(a) Comparison of capillary pressure curves for different samples, showing the relationship between capillary pressure and saturation. (b) Similar comparison for another set of samples. (c) Additional comparison with different labeling and data points. (d) Another set of capillary pressure vs. saturation plots.

(e) Surface relaxivity measurements for some of the samples, showing a comparison between average relaxivity and relaxivity used for predicting Pc NMR. (f) Additional surface relaxivity measurements with different labeling.
<table>
<thead>
<tr>
<th>Formation</th>
<th>Measured Depth (m)</th>
<th>TVD (msl)</th>
<th>Sample ID</th>
<th>Helium porosity (p.u.)</th>
<th>Archimedes porosity (p.u.)</th>
<th>NMR porosity (p.u.)</th>
<th>Archimedes macro-porosity (p.u.)</th>
<th>NMR macro-porosity (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermod</td>
<td>1761.1</td>
<td>1-4</td>
<td>37.3</td>
<td>1.5</td>
<td>35.5</td>
<td>31.2</td>
<td>27.0</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>1761.7</td>
<td>1-6</td>
<td>39.3</td>
<td>1.3</td>
<td>37.2</td>
<td>33.8</td>
<td>29.9</td>
<td>25.4</td>
</tr>
<tr>
<td></td>
<td>1762.1</td>
<td>1-7</td>
<td>39.2</td>
<td>0.4</td>
<td>37.9</td>
<td>35.5</td>
<td>29.6</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>1765.7</td>
<td>1-18</td>
<td>42.4</td>
<td>0.5</td>
<td>40.2</td>
<td>37.2</td>
<td>30.5</td>
<td>28.8</td>
</tr>
<tr>
<td></td>
<td>1768.1</td>
<td>1-25</td>
<td>37.1</td>
<td>0.5</td>
<td>36.7</td>
<td>33.3</td>
<td>25.9</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td>1768.7</td>
<td>1-27</td>
<td>37.8</td>
<td>1.1</td>
<td>37.0</td>
<td>32.7</td>
<td>27.2</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>1770.4</td>
<td>1-32</td>
<td>36.2</td>
<td>0.9</td>
<td>35.5</td>
<td>32.6</td>
<td>26.0</td>
<td>24.3</td>
</tr>
<tr>
<td>Ty</td>
<td>1805.5</td>
<td>1-137</td>
<td>34.7</td>
<td>0.8</td>
<td>36.1</td>
<td>31.6</td>
<td>24.2</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>1806.1</td>
<td>1-139</td>
<td>34.2</td>
<td>0.5</td>
<td>34.3</td>
<td>31.6</td>
<td>23.1</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td>1806.7</td>
<td>1-141</td>
<td>34.9</td>
<td>0.3</td>
<td>34.6</td>
<td>31.8</td>
<td>24.1</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>1810.7</td>
<td>1-153</td>
<td>40.0</td>
<td>0.4</td>
<td>38.6</td>
<td>33.6</td>
<td>27.2</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>1972.1</td>
<td>1A-141</td>
<td>30.1</td>
<td>0.1</td>
<td>29.5</td>
<td>27.0</td>
<td>19.4</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>1972.4</td>
<td>1A-142</td>
<td>29.3</td>
<td>0.7</td>
<td>29.0</td>
<td>29.0</td>
<td>17.9</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>1975.8</td>
<td>1A-152</td>
<td>27.7</td>
<td>0.3</td>
<td>28.1</td>
<td>26.6</td>
<td>16.7</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>1985.7</td>
<td>1A-182</td>
<td>35.7</td>
<td>0.1</td>
<td>35.3</td>
<td>33.7</td>
<td>23.7</td>
<td>23.9</td>
</tr>
<tr>
<td></td>
<td>1986.0</td>
<td>1A-183</td>
<td>36.2</td>
<td>0.4</td>
<td>35.5</td>
<td>33.3</td>
<td>24.9</td>
<td>24.5</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Klinkenberg permeability (mD)</th>
<th>SSA (BET) (m²/g)</th>
<th>Sp (Kozeny) (µm⁻¹)</th>
<th>Sp (image) (µm⁻¹)</th>
<th>T₂ Cutoff (ms)</th>
<th>Irreducible water saturation from Pc (%)</th>
<th>Irreducible water saturation from NMR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>530</td>
<td>21</td>
<td>0.34</td>
<td>0.32</td>
<td>5.2</td>
<td>25.6</td>
<td>27.2</td>
</tr>
<tr>
<td>1-6</td>
<td>560</td>
<td>21</td>
<td>0.35</td>
<td>0.33</td>
<td></td>
<td>19.6</td>
<td>24.9</td>
</tr>
<tr>
<td>1-7</td>
<td>680</td>
<td>21</td>
<td>0.31</td>
<td>0.35</td>
<td></td>
<td>22.1</td>
<td>24.9</td>
</tr>
<tr>
<td>1-18</td>
<td>940</td>
<td>19</td>
<td>0.27</td>
<td>0.32</td>
<td></td>
<td>24.2</td>
<td>22.6</td>
</tr>
<tr>
<td>1-25</td>
<td>540</td>
<td>20</td>
<td>0.33</td>
<td>0.35</td>
<td></td>
<td>29.4</td>
<td>28.8</td>
</tr>
<tr>
<td>1-27</td>
<td>570</td>
<td>22</td>
<td>0.33</td>
<td>0.33</td>
<td></td>
<td>26.5</td>
<td>29.8</td>
</tr>
<tr>
<td>1-32</td>
<td>550</td>
<td>21</td>
<td>0.32</td>
<td>0.36</td>
<td></td>
<td>26.7</td>
<td>25.5</td>
</tr>
<tr>
<td>1-137</td>
<td>260</td>
<td>20</td>
<td>0.45</td>
<td>0.34</td>
<td></td>
<td>33.0</td>
<td>29.8</td>
</tr>
<tr>
<td>1-139</td>
<td>210</td>
<td>22</td>
<td>0.49</td>
<td>0.38</td>
<td></td>
<td>32.8</td>
<td>31.8</td>
</tr>
<tr>
<td>1-141</td>
<td>360</td>
<td>20</td>
<td>0.38</td>
<td>0.39</td>
<td></td>
<td>30.5</td>
<td>29.2</td>
</tr>
<tr>
<td>1-153</td>
<td>390</td>
<td>23</td>
<td>0.39</td>
<td>0.33</td>
<td></td>
<td>29.6</td>
<td>31.6</td>
</tr>
<tr>
<td>1A-141</td>
<td>230</td>
<td>17</td>
<td>0.43</td>
<td>0.35</td>
<td>3.7</td>
<td>34.4</td>
<td>34.2</td>
</tr>
<tr>
<td>1A-142</td>
<td>160</td>
<td>19</td>
<td>0.49</td>
<td>0.35</td>
<td></td>
<td>38.4</td>
<td>35.7</td>
</tr>
<tr>
<td>1A-152</td>
<td>80</td>
<td>20</td>
<td>0.68</td>
<td>0.36</td>
<td></td>
<td>40.7</td>
<td>34.4</td>
</tr>
<tr>
<td>1A-182</td>
<td>60</td>
<td>22</td>
<td>0.95</td>
<td>0.46</td>
<td></td>
<td>32.9</td>
<td>28.9</td>
</tr>
<tr>
<td>1A-183</td>
<td>100</td>
<td>19</td>
<td>0.74</td>
<td>0.41</td>
<td></td>
<td>29.9</td>
<td>26.4</td>
</tr>
</tbody>
</table>