Kombineret dagslys og intelligent LED belysning - få dagslys ind i bygningerne
Slutrapport for PSO 342-044 og PSO 344-007

Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders; Poulsen, Peter Behrens dorff; Markvart, Jakob; Iversen, Anne; Logadóttir, Ásta

Publication date:
2013

Document Version
Også kaldet Forlagets PDF

Citation (APA):
Kombineret dagslys og intelligent LED belysning
- få dagslys ind i bygningerne

Slutrapport for PSO 342-044 og PSO 344-007
Af Carsten Dam Hansen, Dennis Corell, Anders Thorseth, Peter Poulsen, DTU Fotonik
& Jakob Markvat, Anne Iversen og Ásta Logadóttir, SBi
Marts 2013
Forord

Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings og udviklingsprojektet ”Kombineret dagslys og intelligent LED belysning - få dagslys ind i bygningerne” og udgør slutrapportering for dette projekt.

Projektet er gennemført i et samarbejde imellem følgende partnere: DTU Fotonik, Statens Byggeforskningsinstitut, Rambøll Danmark, Energrådgiveren og Philips Lighting Denmark. Projektet har været under ledelse af

DTU Fotonik
Seniorforsker, Ph.d. Carsten Dam-Hansen
Frederiksbergvej 399, Bygn. 128, Postboks 49,
4000 Roskilde
CVR-nr.: 30060946

I rapportens første del gives et kortfattet resumé af projektet og dets resultater, herunder baggrunden for og formålet med projektet, hovedresultaterne samt konklusioner og perspektiverne af projektets resultater. I rapporten gives en oversigt over dynamiske belysningssystemer og en beskrivelse af opbygningen af et nyt intelligent dynamisk belysningssystem baseret på farveblendings LED teknologi. Systemet, som er udviklet til forskningsbrug, er beskrevet i rapportens sidste del sammen med en beskrivelse af forsknings brugerundersøgelser udført med systemet. Endelig gives en beskrivelse af formidlingsarbejdet i projektet.

Carsten Dam-Hansen
DTU Fotonik, Roskilde, 31 marts 2013.
Preface
This report contains a description of the work carried out and the results of the research and development project "Combined daylight and Intelligent LED lighting - getting the daylight into the buildings” and form the final report for this project.

The project is carried out in cooperation between the following partners: DTU Fotonik, Statens Byggeforsknings-institut, Rambøll Danmark, Energirådgiveren and Philips Lighting Denmark. The project has been led by:

DTU Fotonik
Senior scientist, Ph.d. Carsten Dam-Hansen
Frederiksborgvej 399, Bygn. 128, Postboks 49,
DK-4000 Roskilde
CVR-nr.: 30060946

The project was financed by the Danish Energy Association through Elforsk’s PSO program, under actions 1. Buildings, 3. Lighting and 5. Power and control electronics. The project has no. PSO 342-044 and PSO 344-007. It was initiated in February 2010 and was ended in March 2013.

In the first part of the report a short resume of the project is given, describing the background and aim of the project, the work and results together with future perspectives of the results of the project. The report contains an overview of dynamic lighting systems and a description of the development of a new intelligent dynamic lighting system based on color mixing LED technology. The system, which has been developed for research purposes, is described in the last part of the report together with a description of the research user test done with the system. Finally the work on communicating the results of the project is described.
Indhold

<table>
<thead>
<tr>
<th>Indhold</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forord</td>
<td>2</td>
</tr>
<tr>
<td>Preface</td>
<td>3</td>
</tr>
<tr>
<td>Resumé</td>
<td>5</td>
</tr>
<tr>
<td>Baggrund</td>
<td>5</td>
</tr>
<tr>
<td>Formål</td>
<td>5</td>
</tr>
<tr>
<td>Projektgruppen</td>
<td>5</td>
</tr>
<tr>
<td>Resultater</td>
<td>6</td>
</tr>
<tr>
<td>Konklusioner og perspektiver</td>
<td>6</td>
</tr>
<tr>
<td>Dynamiske belysningssystemer</td>
<td>8</td>
</tr>
<tr>
<td>Forskningsanlæg</td>
<td>8</td>
</tr>
<tr>
<td>Forbrugerprodukter</td>
<td>8</td>
</tr>
<tr>
<td>Professionelle produkter</td>
<td>9</td>
</tr>
<tr>
<td>Dynamisk LED system</td>
<td>10</td>
</tr>
<tr>
<td>LED moduler</td>
<td>10</td>
</tr>
<tr>
<td>Lys armaturerne</td>
<td>11</td>
</tr>
<tr>
<td>Komponent karakterisering</td>
<td>13</td>
</tr>
<tr>
<td>Lys moduleringen</td>
<td>14</td>
</tr>
<tr>
<td>Lysstyring</td>
<td>17</td>
</tr>
<tr>
<td>Elektronisk styring</td>
<td>21</td>
</tr>
<tr>
<td>Brugertest</td>
<td>22</td>
</tr>
<tr>
<td>Formål</td>
<td>22</td>
</tr>
<tr>
<td>Fremgangsmåde</td>
<td>22</td>
</tr>
<tr>
<td>Resultater</td>
<td>23</td>
</tr>
<tr>
<td>Rumbelysningen</td>
<td>23</td>
</tr>
<tr>
<td>Arbejdsbelysningen</td>
<td>24</td>
</tr>
<tr>
<td>Sammenligning af koncepter</td>
<td>25</td>
</tr>
<tr>
<td>Konklusion af brugertest</td>
<td>25</td>
</tr>
<tr>
<td>Formidling</td>
<td>26</td>
</tr>
<tr>
<td>Videnskabelig publikation</td>
<td>26</td>
</tr>
<tr>
<td>Præsentationer</td>
<td>26</td>
</tr>
<tr>
<td>Referencer</td>
<td>27</td>
</tr>
</tbody>
</table>

DTU Fotonik

Department of Photonics Engineering
Resumé
I det følgende gives et kortfattet resumé af projektet og dets resultater, herunder baggrunden for og formålet med projektet, hovedresultaterne samt konklusioner og perspektiverne af projektets resultater.

Baggrund
Baggrunden for projektet var at dynamisk belysning som indebærer mulighed for at styre lysets farvetemperatur såvel som styrke så småt var ved at komme frem på markedet, og mange nye dynamiske belysningssystemer har igennem projektperioden vundet mere og mere frem. Der er nogle systemer som er baseret på lysstofrørteknologi, men langt de fleste er baseret på LED teknologi. Det er bl.a. LED teknologiens muligheder med hvide LEDer ved forskellige farvetemperaturer og farveblandingsteknologi der gør det muligt at lave belysningssystemer hvor lyset kan ændres i farvetemperatur og styrke. Det er blevet vist at menneskers døgnrytme, hormonproduktion og igennem disse menneskers velvære er afhængig af det lys og mørke som vi får i løbet af et døgn. Specielt har lyset blå spektraldele betydning herfor. Kunstig belysning der kan bringe dagslysets foranderlighed ind i bygninger, siges derfor at vil kunne bringe velvære og øget aktivitet til mennesker. Men der er mange ting der ikke er afklaret og hvor mange muligheder skal folk have for selv at styre lyset. Skal det være automatisk styring, der følger dagslyset? Eller skal det være forprogrammerede scenarier og hvilke? Kræver det at man øger belysningssstyrken, for at modsvare dagslysets høje belysningssstyrker? Hvilken effekt får det på energiforbruget? Hvor store dynamikområder er nødvendige, farvetemperaturmæssigt og lysstyrke mæssigt? Hvad er menneskers præferencer? Og ikke mindst kan man påvise en positiv effekt hos mennesker der påvirkes i løbet af dagen i lyset fra dynamiske belysningssystemer?

Formål

Hoveddelene i arbejdet i projektet har derfor været

- Design af intelligent dynamisk LED belysningssystem til demonstrationsforsøg
- Udvikling og karakterisering af styrbare LED lyskilder/lamper og kalibrering af farvesensorsystem
- Design, programmering og optimering af styringsstrategi til demonstrationssystem
- Opbygning og lystekniske test af demonstrations system i SBI’s dagslys laboratorie
- Udførelse af brugertest i SBI’s dagslys laboratorie
- Analyse og publicering af resultater af brugertest
Projektgruppen

Til at gennemføre og opnå dette blev en forskningsgruppe bestående af DTU Fotonik som projektledende, Statens Byggeforskningsinstitut (SBI), Rambøll Danmark, Energirådgiveren og Philips Lighting Denmark. DTU Fotonik har kompetencer indenfor LED teknologi, beregning og måling på lys og stof for opbygning, programmering og test af LED system. SBI står med deres dagslys laboratorium og kompetencer indenfor belysning og brugertest for, design af system, scenarioer og forskningsundersøgelserne af menneskers præferencer i forhold til systemet. Rambøll og Philips Lighting har deltaget i design og dimensioneringsfase af projektet og Energirådgiveren har set på de energimæssige betragtninger.

Resultater

Hovedresultatet af projektet er opbygningen af det nye intelligente og dynamiske LED belysningssystem til demonstrations- og forskningsformål og en række omfattende brugertest er gennemført, analyseret og vil blive publiceret ved CIE’s 100 års jubilæums konference ”Towards a new century of Light” i april, 2013.

LED belysningssystemet er et fuldt system til kontorbelysning med loftsarmaturer og arbejds lamper, hvilket har gjort det muligt at skabe generel og arbejdsplads belysning i to kontorer med hver to arbejdspladser. Systemet er installeret i SBI’s dagslys laboratorium i sådanne to kontorrum. Alle lamper kan styres via et udviklet computer interface og arbejds lamperne er yderligere manuelt styrbare for en bruger med to drejeknapper for hhv. farvetemperatur og lysstyrke.

Det nye intelligente og dynamiske belysningssystem er baseret på farveblandings LED teknologi, og gør det muligt at styre lysets farvesammensætning, farvekoordinater og dermed den korrelerede farvetemperatur af lyset. Styrmæssigt er systemet forprogrammeret til at kunne producere hvidt lys med en korreleret farvetemperatur fra 2700 K til 7000 K. Farvesammensætningen er optimeret ud fra ønske om en meget god farvekvalifikation givet ved et generelt Ra-indeks på 92-97 over hele området. Systemet kan dæmpes 20-100%, uden væsentlig ændring af lysets farveegenskaber. Et mini-spektrometer er kalibrieret og indbygget i systemet og leverer løbende estimat af dagslysens lysstyrke og farvetemperatur, igennem måling af dagslysens farvesammensætning i det synlige område. Systemet benytter dagslysens egenskaber til at styre lyset fra LED belysningssystemet.

Resultatet af brugertestene viser at den udviklede mulighed for automatisk regulering af lyset på arbejdsområdet efter dagslysens farvetemperatur vurderes at være lige så foretrukket og medføre lige så tilfredse brugere som et traditionelt lysanlæg med jævn belysning i rummet. Til gengæld viste brugerresultaterne at der både var energibesparelse at hente samt mere tilfredse brugere ved at give brugerne mulighed for selv at justere enten lysniveauer eller den korrelerede farvetemperatur på arbejdsområdet og reducere almenbelysningen i rummet.

Projektet og dets resultater er blevet formidlet til en række forskellige interessenter igennem en række formidlings aktiviteter som, foredrag ved workshop og kurser for studerende og industrien, møder med internationale samarbejdspartnere, og ved internationale konferencer om belysning.

Konklusioner og perspektiver

Med projektet er der udviklet et nyt forskningsværktøj, i form af et intelligent dynamisk LED belysningssystem, til demonstrationsformål og til forskningsundersøgelser af brugerpræferencer med hensyn til belysning i f.eks. kontorer enten kun som kunstig belysning eller i samspil med dagslys.

Mange nye dynamiske belysningssystemer baseret på LED teknologi er på vej på markedet med anvendelsesområder som f.eks. kontor, hospitals og skole-belysning. Og med den generelle udvikling inden for LEDers effektivitet vil systemer med LED kunne lave store energibesparelser, ikke kun som følge af øget lys udsendelse pr. tilført watt men også i øget intelligens og styring af lyset og dermed energiforbruget. Udbredelsen og brugertilfredsheden af disse belysningssystemer vil kunne øges hvis der kommer flere videnskabelige svar på de mange spørgsmål der er til sådanne systemers egenskaber og virkemåde.
Dynamiske belysningssystemer

Dette kapitel indeholder et overblik over tilgængelige lysprodukter/kilder og faciliteter med dynamiske egenskaber som blev udarbejdet parallelt med projektet af DTU Fotonik, i samarbejde med de andre partnere. Da denne type systemer ikke deler en fælles overordnet kategori eller navn er det vanskeligt at danne et omfattende overblik. Fremgangsmåden der her er benyttet fremhæver løsninger fra store aktører indenfor belysning, med vægt på løsninger stillet til rådighed af danske erhvervsliv.

Forskningsanlæg

NIST Spectrally Tunable Lighting Facility

NIST har faciliteter bestående af 2 værelser oplyst af loftsplader med LED moduler bestående af 22 farvekanaler til eksperimenter indenfor farvegengivelse og farveopfattelse (Miller, et al., 2009). Her er dog ikke fokus på samspillet med udelyset og systemet kan ikke realistisk set bruges i f.eks. en kontor sammenhæng.

Colour Engineering Center (CEC)

Department of optical engineering ved Zhejiang universitetet I Hangzhou i Kina har faciliteter der ligner dem fra NIST. Loftet er udstyret med ca. 200 moduler af 16 farvekanaler hver med en udskiftelig fatning til LED med lav styrke (Dam-Hansen, 2012), centret blev indviet i september 2012, og har der for ikke publiceret nogen resultater.

Forbrugerprodukter

Philips Hue

Hue fra Philips er et LED system med 3 farvekanaler bestående af E27 retrofit pærer der styres med en iPhone mini applikation(app) der integrerer med Zigbee samt WiFi netværk. Angiveligt har produktet en maksimal farvegengivelse på CRI=91. Der foreligger ikke megen teknisk information (Wright, 2012), men produktet er til salg i Danmark.

LIFX

En fælles finansieret (crowd source) opstartsvirksomhed på hjemmesiden kickstarter.com (Bosua, 2012) som umiddelbart virker til at være sat op til at have de samme egenskaber som Philips Hue bare over WiFi. Internetbrugere har tilsammen givet tilslagn om 1,3 mio. USD til projektet.

Panasonic Everleds

Panasonic har sit eget mærke indenfor loftsbelysning (Everleds) som reguleres med ECONAVI styring som kan skifte farvetemperatur og dæmpe belysningen. Produktet virker ikke til at henvende sig til det engelsktalende marked (Panasonic Corporation, 2012).
Professionelle produkter

Philips SchoolVision

Philips HealWell
HealWell fra Philips er en løsning målrettet patienter på hospitaler der skifter den generelle værelsesbelysning (lysstofrørs) og LED farver i en wall wash over døgnets 24 timer. En undersøgelse viser forbedring af søvn og generel tilfredshed (Giménez, et al., 2011).

Philips DayWave
DayWave fra Philips er et eksklusivt design produkt der benytter mikrolinser samt 2x96 LED med en CCT (korreleret farvetemperatur) på 3000 og 5500 Kelvin. Produktet er styret af DALI eller DMX (Philips, 2012).

Riegens down light
Concido 150 LED fra Riegens er et forsænket down light produkt med mulighed for varierende DALI-regulering/styring mellem 2700 og 6500 Kelvin (Riegens lighting, 2012).

IGuzzini Sivra Compact
Sivra Compact er et armatur med 7 T16 lyskilder, der kan dæmpes og afstemmes mellem 2700 og 6500 Kelvin (iGuzzini, u.d.).
Tabel 1 En oversigt overfaciliteter og produkter.

<table>
<thead>
<tr>
<th>Benævnelse</th>
<th>Fabrikat/organisation</th>
<th>Farve kanaler</th>
<th>Farvetemperaturspænd</th>
<th>Specialisering</th>
<th>Teknologi</th>
<th>Introduktions tidspunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hue</td>
<td>Phillips</td>
<td>3</td>
<td>Hjemmebrug</td>
<td>LED, ZigBee</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>SchoolVision</td>
<td>Philips</td>
<td>?</td>
<td>Uddannelse</td>
<td>T5</td>
<td>2009/1</td>
<td></td>
</tr>
<tr>
<td>HealWell</td>
<td>Philips</td>
<td></td>
<td>Hospitals</td>
<td>LED and konventionel</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Spectrally Tunable Lighting Facility</td>
<td>NIST</td>
<td>22</td>
<td>Ubegrænset</td>
<td>Forskning</td>
<td>LED</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>CEC, China</td>
<td>16</td>
<td>Ubegrænset</td>
<td>Forskning</td>
<td>LED</td>
<td>2012</td>
</tr>
<tr>
<td>Sivra Compact</td>
<td>iGuzzini</td>
<td>2</td>
<td>2700-6500</td>
<td>T16</td>
<td><2009</td>
<td></td>
</tr>
<tr>
<td>Line Up wall-washer RGB</td>
<td>iGuzzini</td>
<td>3</td>
<td></td>
<td>LED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rune Lighting</td>
<td>iGuzzini</td>
<td>4</td>
<td>Hospitaler</td>
<td>LED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iSign (RGB)</td>
<td>iGuzzini</td>
<td>3</td>
<td></td>
<td>RGB LED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DayLight-0001</td>
<td>i-NO</td>
<td>3</td>
<td>3000-5500</td>
<td>Kontor,</td>
<td>LED</td>
<td>2012</td>
</tr>
</tbody>
</table>

Dynamisk LED system
Det dynamiske lyssystem der er blevet anvendt til at foretage undersøgelserne er blevet udviklet af DTU Fotonik og vil blive beskrevet i denne sektion.

LED moduler
Systemet er bygget op af LED moduler bestående et print med i alt 40 LEDs på, med 9 typer af hhv. hvide og farvede LEDer: Rød (636 nm), Cyan (505 nm), PC Amber (596 nm), Grøn (517 nm), Blå (455 nm), Blå (465 nm), varmhvid (2811 K), neutralhvid (3899 K), koldhvid (6017 K). Et enkelt modul kan levere op til 1400 lumen hvidt lys med en høj farvegengivelse (Ra > 93). LED’erne er monteret i et lille cirkulært område med en diameter på 45 mm, se Figur 1. Disse moduler er små nok til at et enkelt kan monteres i en arkitektlampeskærm, eller flere kan sættes sammen i en klynge til områdebelysning. Hvis de enkelte moduler ikke dæmpes og drives ved fuld styrke bruges der ca. 25 W.

1 First case story, dated 2009.
Lys armaturerne

Til undersøgelsen er der blevet opbygget to helt identiske rum, der kan ses på Figur 16. Lyssystemet i hvert af disse rum består af 3 loft armaturer (5 LED modul i hver) samt 2 bordlamper (1 LED modul i hver).

Bordlampen, se Figur 2, består af et enkelt LED modul indfattet i skærmen på en kommersiel bordlampe med en varmeafleder og en polymer diffuser plade monteret på lampeskærm. Bordlampen er udstyret med 2 trinløse 240° justeringsknapper, der kan justere henholdsvis farvetemperaturen eller lysniveauet for bordlampen.

Loftsbelysningsarmaturerne kan ses i Figur 3 og består af 5 LED moduler indsat i et modificeret Philips Savio armatur. Armaturet er blevet modificeret med en reflekter skærm der er couted med en høj reflektørende, stærkt diffuserende maling, BaSO₄. Derudover er der indsat en prismatisk difusser for at blande og sprede lyset fra armaturet endnu mere.
Figur 2 Ny arbejdlampe der indgår i det intelligente dynamiske belysningssystem. Lampen er med computer eller manuel styring af lysets styrke og farvetemperatur. Indgår i brugertest som arbejdsplassbelysning.

Komponent karakterisering
Spektral fordelingen af de enkelte LEDs er blevet målt med kalibreret karakteriserings system bestående af en integrerende kugle (Ø 1m) der er fiber (Ø 1000µm) koblet til et termisk stabiliseret spektoradiometer fra Ocean Optics (QE65000).

Farvestyringen af lyset fra LED- enheden er baseret på en spektral karakterisering af de enkelte LEDer på diodeprintet målt i steady state som funktion af strøm og PWM dæmpning. Forhold som diode temperatur og ældning er der ikke implementeret korrigerer for.

Dagslysets spektral fordeling blev målt gennem et vindue ved, at anvende et kalibreret Hamamatsu CMOS C10988MA mini-spektrometer med en cosinus diffuser ved indgangsporten.
Lys moduleringen
Kratet til lyset fra systemet var at det skulle kunne varieres i farvetemperaturområdet fra 2700 K til 7000 K med en meget god farvegengivelse (Ra > 92) samt en lav kromatisk afstand. I dette system bliver de farvede dioder drevet med en konstant strøm og intensiteten af deres spektral fordeling varieres ved at ændre på den PWM de drives ved. Ved de hvide dioder kan der både ændres ved operationsstrømmen og deres PWM.

Farvediagrammerne (CIE 1960) på Figur 5 viser henholdsvis de kromatiske koordinater for de dioder der er anvendt i designet (venstre), samt koordinaterne for 21 nøje udvalgte fikspunkter(højre). Det ses at den muliggjorte farve gamut næsten dækker hele farve diagrammet hvilket betyder at LED modulerne ville kunne udsende lys der dækker det meste af det synlige spektrum. Lyset fra LED modulet kan variere i farvetemperatur fra 2700 - 7000 K over i alt 319 trin, hvilket gør at folk ikke kan registrere nogen ændringer i farvetemperaturen på to nabo punkter (Bieske & Schierz, 2010). For at sikre at dette foregår glidende og at det resulterende lys er af høj kvalitet blev 21 fikspunkter udvalgt, hver af disse lever op til kravene om høj farvegengivelse og lav kromatisk afstand.

![Figur 5 Kromaticitetsdiagram (u,v) der viser punkterne for de hvide farver af de tre hvide LEDer i lampen (sorte krydser) af det resulterende lys fra lampen som ligger på og mellem de røde og blå prikker.](image)

Imellem hver af de røde og blå prikker ligger 15 farveblandinger, spektral fordelingerne kører med en glidende overgang fra spektral fordelingen i det “røde” fikspunkt over til spektral fordelingen i det “blå” fikspunkt. Dette sikrer, at farveblandingerne imellem fikspunkterne også har en høj farvegengivelse. Figur 6 viser hvordan farvesammensætningen af lyset ser ud, det ses at ved lave farvetemperaturer at der er en stor rød komponent i spektral fordelingen og at som farvetemperaturen stiger at denne komponent aftager og det blå indhold i spektral fordelingen går hen og bliver mere og mere dominerende.
Lyssætningen for hvert LED modul kan dæmpes fra den maksimale lysstrøm ned til 20 % henover 37 trin, i simuleringerne er dette er gjort så variationen af farvetemperaturen ligger indenfor hvad der kan registreres med øjet (Bieske & Schierz, 2010). Strømmen på de enkelte kanaler kan med den valgte driver variere +/- 5 %, hvilket vil forsage en forskel på farvetemperatur og lysstrøm imellem de enkelte LED enheder. For at finde ud af hvor stor en betydning dette egentlig vil have i realiteten er der blive taget simuleringer på dette der viser at usikkerheden for lave farvetemperaturer går fra 1 % til 2 % for høje
farvetemperaturer. Dette gjorde at der ikke ville kunne registreres nogen forskel på farvetemperaturen fra de enkelte enheder så længe de drives fra 3000–7000 K.

Alle indstillingerne bliver gemt i en organiseret tabelform der anvendes som input til styringselektronikken, på denne måde sikres at der er fuld kontrol over input paramterne for indstillingerne.

På Figur 7 - Figur 9 er vist en optimeret spektral fordeling, den sorte kurve for varmt hvidt, neutral hvidt og koldt hvidt lys. Den røde kurve på figurerne viser hvorledes spektral fordelingen ville se ud hvis den var dæmpet til 10 % (Vores system dæmpes dog kun ned til 20 %) Det ses at der næsten ingen forskel er i lyssammensætningen når der dæmpes ned fra 100 til 10 %.

Figur 7 Optimeret spektralfordeling for varmt hvidt lys ved 2714 K, ved hhv. 100 og 10 % lysstyrke.
Lysstyring

Lyset bliver styret efter nogle lyskoncepter / scenarier, de vil blive beskrevet herunder. De forskellige koncepter beskriver hvilke armaturer der er sat til forskellige lysindstillinger, og hvordan de kan ændres (om det er brugeren eller forsøgslederen der må ændre lysindstillingerne.)

Der er valgt i alt 4 forskellige lyskoncepter, der er blevet testet igennem i denne undersøgelse, en beskrivelse af disse kan ses i Tabel 2. Denne tabel viser målte farvetemperaturer og illuminanser for de forskellige armaturer ved arbejdsfladerne. I de forskellige koncepter kører loftlamperne ved konstant farvetemperatur og konstant illuminans niveau på bordet. Det er muligt for brugeren at indstille på bordlamperne i to concepter, enten hvor farvetemperaturen bliver holdt konstant og lysniveauet kan ændres, eller hvor lysniveauet er konstant og farvetemperaturen kan justeres. Der blev i begyndelsen af projektet arbejdet med andre scenarier også, men det blev valgt kun at køre med disse fire. LED systemet giver dog rig mulighed for at lave et hav af andre scenarier at teste igennem også.

Tabel 2 The key parameters of the concepts used in the study. The daylight CCT is calculated from the SPD recorded in the window.

<table>
<thead>
<tr>
<th>Concept</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling light, CCT [K]</td>
<td>3494±7</td>
<td>3491±17</td>
<td>3491±17</td>
<td>3491±17</td>
</tr>
<tr>
<td>Ceiling light, illuminance [lx]</td>
<td>351±20</td>
<td>177±10</td>
<td>177±10</td>
<td>177±10</td>
</tr>
<tr>
<td>Task light CCT [K]</td>
<td>-</td>
<td>2698 ± 56</td>
<td>User adjustable</td>
<td>Daylight*</td>
</tr>
<tr>
<td>Task light illuminance [lx]</td>
<td>-</td>
<td>User adjustable</td>
<td>300</td>
<td>388±77</td>
</tr>
</tbody>
</table>

*) Farvetemperaturen der er blevet beregnet ud fra det målte dagslys er anvendt i scenarie D.
Da undersøgelserne stod på var det ofte overskyet, dette giver meget høje farvetemperaturs værdier for dagslyset, LED systemet havde en øvre farvetemperaturs begrænsning på 7000 K og under overskyede tilstande ville systemet altid have denne værdi og derfor ikke variere i farvetemperatur som funktion af dagslyset som ønsket. For at komme dette til livs blev der indført en farvetemperaturs forskydnings-faktor som forsøgslederen kunne indstille manuelt. Dette forskydnings faktor blev dog udregnet som en forskel i Kelvin. Dette forårsagede at mindre ændringer i dagslyset, som man normalt ikke ville kunne se den store forskel på med øjet, blev til meget store ændringer i den lave del af farvetemperatursskalaen, grundet ulinearitet af ændringer i farvetemperatur, påvist af (Bieske & Schierz, 2010). Disse ændringer blev anset for værende alt for forstyrrende til at kunne blive anvendt i undersøgelsen. Desværre blev årsagen til fejlen ikke opdaget tidsnok til at ændre i forskydnings-faktoren og den blev derfor nulstillet under forsøget. Desuden viser plot af lysmålinger i vindueskarmen (Figur 10) at der er målt voldsomme svingninger i både farvetemperatur og intensitet.

Figur 10 Den korrelerede farvetemperatur målt i vindueskarmen og den tilsvarende indstilling brugt i scenario D, vist som en funktion af tiden henover en almindelig dag.
Når man ændrer på PWM eller strømen for de forskellige dioder, vil der være ændringer på LEDernes spektral frodeling, dette vil give nogle ændringer i farvegengivelsen, disse ændringer kan ses på Figur 11. Det ses at farvegengivelsen ikke falder under de 92 som var kravet j.f. i afsnittet “Lys moduleringen”.

Figur 11: Det simulerede farvegengivelsesindeks til de enkelte løsninger som en funktion til lysdæmpning og korreleret farvetemperatur a). Et eksempel på simuleret og målt spektral lysstyrke b).

Figur 12a) viser hvorledes lysstrøm for et LED modul opfører sig som funktion af dæmpnings trin. Fejlmarginen viser standard afvigelsen for lysstrømmen hvis de enkelte drivere variere +/- 5 %. Figur 12b) Viser farvetemperaturen som funktion af farvetemperaturs step. Det ses at lysstrømmen aftager lineært når der dæmpes og standard afvigelsen er meget lille. Omvendt ses det at farvetemperaturen ikke opfører sig lineært når man kører igennem de forskellige farvetemperaturs steps. Grunden til dette skyldes et ønske om at den oplevede farveforskel imellem to steps ikke måtte være forskellig lige gyldig om der blev drejet ved lave eller høje farvetemperaturer. For at tage højde for dette er farvetemperaturs stepsne udført således at hvert farvetemperaturs trin ændrer farvetemperaturen med 0,7 MK−1 (mired) lige gyldigt om man er ved høje eller lave farvetemperaturer, dette gør at denne ikke lineære sammenhæng kan ses.
Farvetemperaturen og lysstrømmen for hver LED enhed i loft armaturet opfører sig på samme måde som det anvendt i bordlampen (Figur 12). Det er ikke muligt for forsøgspersonerne at indstille loftlamperne, lyset fra disse afhænger af hvilket scenarie der bliver kørt efter.

Elektronisk styring

Der er udviklet driver- og styring-enheder til det intelligente belysningssystem, renderinger af de elektroniske komponenter er vist i Figur 14. Driverenheden styrer lyset fra de enkelte typer (farver) af LEDer, som er serieforbundet, ved styring af operationsstrømmen og pulsviddemodulation/pulse width modulation (PWM). Der er 3 LED kanaler som kan strøm- og PWM styres, fra 0-1A, og 6 LED kanaler (5 stk 1A, 1stk 700mA), der kun kan PWM styres. Tabelværdier for operationsstrøm og PWM dæmpning for de enkelte typer af LEDer sendes fra Labview styring programmet til styringsenheden som sætter de ønskede værdier på driverenheden. Kommunikationen mellem enhederne som ses i Error! Reference source not found. foregår over CAN bus interfacet. CAN bus er en robust dataprotokol der også bruges i mere kritiske anvendelser, som f.eks. til sikkerhedsfunktioner i fly og biler.

Figur 13 Udsnit af brugergrensefladen for forsøgslederen

Figur 14 Driverprint (til venstre) og styreprint (til højre) til intelligent belysningssystem
Kontrolsystemet der regulere lyset i dette projekt er lavet således at det er realtidskontrol af belysningen for både forskere og testpersoner. De benyttede scenarier i undersøgelsen er forudprogrammerede i kontroloenheden og kan ændres af undersøgelseslederen.

Brugertest

Formål
Der findes mange forskellige måder at lave elektrisk dynamisk belysning på, fra regulering efter dagslyset til manuel regulering efter behov. For at et koncept om dynamisk elektrisk belysning bliver implementeret på en god måde, er det nødvendigt at afprøve i hvilken grad, brugerne ønsker dynamisk belysning, og vurdere muligheder for energibesparelse. For at implementering af dynamisk belysning udføres optimalt er det derfor nødvendigt at kortlægge brugertilfredsheden samtidigt med, at energiforbruget betragtes.

Formålet med brugerundersøgelsen er at undersøge, om brugertilfredshed øges ved brug af dynamisk belysning i kontormiljøer. Det gøres ved at sammenligne brugertilfredshed og energiforbrug for fire forskellige lyskoncepter i et lyslaboratorium.

Fremgangsmåde
koncept blev afprøvet i lokale A og det andet koncept i lokale B per forsøgsperiode (P1-P4) på halvanden time hver.

![Diagram](image)

Figur 16 Forsøgsopstilling i SBI, AAU’s lyslaboratorium i Hørsholm.

Forsøgsopstillingen bestod af to rum (Room A og Room B) med hver rum et roklækkert lyskabinet (luminaire). Rumene var hver 3,5 x 6 meter og var adskilt ved en 4 meter lang delvæg.

Forsøgsopstillingen var til stede en hel arbejdsdag og udførte egne kontoropgaver. Ved udgangen af hver forsøgsperiode (P1-P4) udfyldte forsøgsopstillingen spørgeskema om tilfredshed med det visuelle indeklima og det afprøvede lyskoncept mere specifikt. Sidst på dagen blev de yderligere bedt om at vurdere de fire lyskoncepter op i mod hinanden.

Forsøgsopstillingen var i alderen 19-37 år. De havde normalt syn eller brugte briller/linser samt normalt farvesyn, 45 kvinder og 38 mænd. Fuldt dataset eksisterer for 81 forsøgsopstillingen.

Resultater

For en detaljerede beskrivelse af tilfredshedsdataanalysen henvises der til (Logadottir, et al., 2013). Ifølge forsøgsopstillingen arbejdede de på computer 69,2 % af tiden, læste fra papir 25,3 % af tiden og skrev på papir 5,5 % af tiden. Resultaterne som fremgår i denne rapport viser besvarelser fra de to sidste spørgeskemaer, besvarelser ved periode P4 (efter forsøgsopstillingen har oplevet alle lyskoncepter men bliver bedt om at vurdere det lyskoncept de er udsat for i løbet af perioden) samt det sidste spørgeskema om sammenligning af alle fire koncepter.

Rumbelysningen

Mellemværdi for vurdering af rumbelysningen lå et sted mellem ’delvist tilfredsstillende’ og ’tilfredsstillende’ uafhængigt af koncept. Se nærmere fordeling mellem de forskellige lyskoncepter i Figur 17. Tilfredshedsvurderingen viser generel tilfredshed med lysniveauerne i rummet for alle koncepter på
trods af at koncept A bidrager med en middelværdi for belysningsstyrke på 351 lux i lokalet og de øvrige koncepter kun med 177 lux.

Figur 17 Forsøgspersonernes tilfredshed med lysniveauet i rummet.

Forsøgspersonerne blev yderligere bedt om at vurdere lysniveauet i rummet på en skala fra 'for lavt' til 'for højt' og resultatet for de forskellige koncepter og det samlede resultat vises i Figur 18. Det viser sig heller ikke at være signifikant forskel mellem opfattelsen af lysniveauerne i rummet og i fleste tilfælde vurderes lysniveauet som værende tilpas.

Det at lysniveauerne i rummet ved de forskellige koncepter vurderes tilpas og tilfredsstillende af de fleste forsøgspersoner uanset om almenbelysningen bidrager med middelværdi af 351 eller 177 lux i lokalet viser at energiforbruget kan reduceres uden at gå på kompromis med disse brugeres oplevelse og vurdering af lysniveauet i rummet. Den korrelerede farvetemperatur var den samme for rumbelysningen i alle koncepter og blev også vurderet på samme måde for alle koncepter.

Figur 18 Forsøgspersonernes vurdering af lysniveauer i rummet.

Arbejdsbelysningen

Tabel 3 Tilfredshed med lysniveauet (E) og lysfarven (CCT) på arbejdsområdet (1-‘meget utilfredsstillende’, 2- ‘utilfredsstillende’, 3- ‘delvist utilfredsstillende’, 4- ‘delvist tilfredsstillende’, 5- ‘tilfredsstillende’, 6- ‘meget tilfredsstillende’)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>E [lux]</td>
<td>Middel</td>
<td>3,81</td>
<td>4,94</td>
<td>4,59</td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>1,44</td>
<td>0,94</td>
<td>0,91</td>
</tr>
<tr>
<td>CCT [K]</td>
<td>Middel</td>
<td>3,76</td>
<td>4,78</td>
<td>5,09</td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>1,38</td>
<td>0,65</td>
<td>0,87</td>
</tr>
</tbody>
</table>

Sammenligning af koncepter

Sidst på dagen blev alle 81 forsøgspersoner bedt om at sammenligne de fire forskellige lyskoncepter de havde oplevet i løbet af dagen. De blev bedt om at stille deres præference for lyskoncept op i en rækkefølge fra et til fire, hvor et er det mest foretrukne lyskoncept. Lyskoncept C kom på første plads (M= 1,77, STD=0,86), koncept B på anden plads (M= 2,1; STD= 0,85), koncept D på tredje plads (M= 3,02, STD=0,99) og koncept A på sidste plads (M= 3,11, STD=1,13). Analysen viser ikke en forskel på de to sidste pladser (koncept A og D) men ellers er der forskel mellem lyskoncepterne.

Konklusion af brugertest

Resultaterne er ikke omfattende for alle de forskellige muligheder man har for dynamisk belysning men kan medvirke til at give en indikation for den grad af dynamisk belysning, der ønskes i kontoromgivelser.

Overordnet viser resultaterne at brugertilfredsheden øges ved brug af de dynamiske belysningskoncepter der er afprøvet i denne undersøgelse.

Til at optimere brugertilfredsheden i kontoromgivelser anbefales at give brugere mulighed for selv at have indflydelse på sine lysomgivelser, uanset om det er tale om justering af lysintensitet eller lysfarver.

Resultaterne bekræfter tidligere resultater om at brugere er mere tilfredse, når de selv får indflydelse på sine lysomgivelser. Denne undersøgelse har vist at det gælder uanset om man sammenligner med en standard jævn belysning i hele rummet eller automatisk styret dynamisk arbejdsbelysning. Denne undersøgelse viser at af de forskellige dynamiske lyskoncepter som afprøves er det de koncepter med manuel størrelse som foretrækkes af brugere og giver mest tilfredshed brugere.

Det at lyskoncept C blev vurderet som det mest foretrukne lyskoncept samt at det medfører størst tilfredshed hos brugere vurderes at være farvet af at muligheden for justering af korreleret farvetemperatur er ny for de fleste forsøgspersoner og bør derfor betragtes som en bias. Koncept D som ligger på niveau med koncept A kan også være influeret af den fejl som der opstod ved måling af dagslysets CCT forklaaret i afsnit Lysstyring på side 18-19. Der var dog kun 18,5 % procent forsøgspersoner som opdagede ændringer ved lyskoncept D og derfor er det kun den del af forsøgspersonerne som muligvis er blevet generet af de store spring i farvetemperatur.

Til at optimere energiforbruget i kontoromgivelser anbefales der på baggrund af disse brugerundersøgelser at placere lyset på arbejdsområdet, og reducere i stedet belysningen i resten af rummet.

Resultaterne opnået i denne undersøgelse viser nemlig at vurdering og tilfredshed med rumbelysningen er den samme for de forskellige lyskoncepter uanset de forskellige belysningsstyrker på henholdsvis 351 lux og 177 lux i rummet.
Formidling
Der er i løbet af projektperioden udført et formidlingsarbejde for at skabe information omkring projektet og de problemstillinger og metoder og resultater som er fremkommet af projektet. Herunder er listet de forskellige formidlingstiltag:

Videnskabelig publikation
De forskningsmæssige resultater af projektet bliver præsenteret ved et foredrag og en videnskabelig artikel (Logadóttir, et al., 2013) på den, inden for belysning vigtige, konferencen “Towards a new century of Light” der markerer 100 året for *International Commission on Illumination* (CIE).

Præsentationer
Projektet og dets formål og indhold er blevet præsenteret ved en række forskellige sammenhænge, kurser, foredrag for samarbejdsparnere, og ved større møder

- Anders Thorseth, Dennis Dan Corell, *LED and photovoltaic research and innovation at DTU Fotonik*, Foredrag ved DTU Afdelingen for Erhverv- og Myndighedsbetjenings månedsmøde, Risø campus 30-1-2013.
- Anders Thorseth, Dennis Dan Corell, *Projects and reasearch at DTU Fotonik LED Team*, Roskilde Håndværkerforenings, Foredrag og rundvisning til Gå-hjem møde, Risø campus, 7-11-12.
- Carsten Dam-Hansen, *LED til belysning*, forelæsning på Dansk Center for Lys kursus, 6-9-12.
- Anders Thorseth, Dennis Dan Corell, *Projects and research at DTU Fotonik LED Team*, MECINE Network møde på Risø campus, 7-6-2012.
- Carsten Dam-Hansen, LED ved DTU Fotonik, Medtech møde, 12-9-11
- Carsten Dam-Hansen, *LED activities at DTU Fotonik*, Møde med professor Liisa Halonen fra Alto Universitet, Finland, Risø campus, 10-1-12.
- Carsten Dam-Hansen, *LED – fremtidens lyskilde*, OpticsCamp 11, Sommerskoleundervisning af interesserede gymnasieløver, Risø campus, 4-7-11.
- Carsten Dam-Hansen, *LED Research at DTU Fotonik*, Build Your Dreams, præsentation, Risø, 29-4-11.
Referencer

Logadottir, A. et al., 2013. Comparison of user satisfaction with four different lighting concepts. s.l.:s.n.

Miller, C. et al., 2009. NIST Spectrally Tunable Lighting Facility for Colour Rendering and Lighting Experiments. s.l., s.n.

Parans, 2012. [Online]

Available at: www.lighting.philips.com/me_en/solutions/education_lighting_solutions.wpd
[Senest hentet eller vist den 11 2012].

Available at: http://www.lighting.philips.com/pwc_li/me_en/solutions/assets/solutions/HealWell_Brochure.pdf
[Senest hentet eller vist den 11 2012].

Philips, 2012. [Online]
Available at: http://www.ecat.lighting.philips.com/l/indoor-luminaires/suspended/daywave/21759/cat/

Available at: http://riegens-lighting.dk/concido-150-led

Available at: http://ledsmagazine.com/news/9/10/25