Bioenergy yield from cultivated land in Denmark - competition between food, bioenergy and fossil fuels under physical and environmental constraints

Callesen, Ingeborg; Grohnheit, Poul Erik; Østergård, Hanne

Published in:
Collection of extended abstracts

Publication date:
2011

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Bioenergy yield from cultivated land in Denmark – competition between food, bioenergy and fossil fuels under physical and environmental constraints

1,2Ingeborg Callesen, 2Poul Erik Grohnheit and 2Hanne Østergård

1 DTU-Man, 2 Risø-DTU

International Conference on Energy, Environment and Health – Optimisation of Future Energy Systems
May 31-June 2, 2010
Carlsberg Academy, Copenhagen, Denmark
Bioenergy past

Danish Energy Agency, 2006
Renewable energy future

Danmarks energifremskrivning frem til 2030
[Energy projection to 2030]
Danish Energy Agency, 2009
Domestic bioenergy?

• What is the potential biomass supply in PJ yr\(^{-1}\)?
• What is the monetary cost?
• Energy efficiency?
• Land availability and suitability for annual crops, short rotation forest (willow) and plantation spruce forest?
• Consequences for nitrogen load
Model overview

Cultivation
- Starch crops
- Oil crops
- Sugar crops
- Grass crops
- Willows (SRF)
- Forest

Conversion
- Ethanol 57%
- Heat/CHP 90%
- RME 70%
- 1G/2G ethanol 54%
- Biogas 54%
- Biogas 54%
- Heat/CHP 81%
- Heat/CHP 69%

Substitution of fossil fuels

Nitrogen load:
- \(\text{N}_2\text{O} \)
- \(\text{NO}_3^- \)
Model parameters

- Denmark, total area 4309 kha
- Amounts and costs of seeds, machine operations, pesticides, fuels, fertilisers and lime.
- Bioenergy conversion types: district heating, heat and power, biogas, biodielsel (RME), bioethanol (data from AEBIOM, 2005)
Minimize fuel cost

• Cost minimization model
• Linear programming – a technique developed within operations research
• Objective function: \(\text{Min } Y = cX \)
• Constraints: \(aX \leq b, X \geq 0, X \sim X_1 \cdots X_n \)

• Energy mix of bioenergy and diesel oil

\[
\min_a \sum_i \left\{ p_{ic(oil)} \times x_{itc} \times a_{it} + p_{oil} \times (E - E_{bio}) \right\}
\]

\(a \sim \text{area, } i \sim \text{crop representative, } c \sim \text{commodity, } t \sim \text{soil type, } \text{oil} \sim \text{oil price} \)
Model constraints I

• Physical
 – Cultivated land area 3200 kha (2005)
 – Forest area: 600 kha
 – Soil types: 48% sandy, 52% loamy

• Agronomy – crop rotations
 – e.g. oilseed rape every 4 years~max 25%

• Environmental: biodiversity ~area reservation for permanent grassland, limits on willow area
Oil price and commodity prices

• Oil price range from index 25 to index 200
 – Index 100 ~2005~9.4€ GJ$
Scenario constraints

Scenario A

<table>
<thead>
<tr>
<th>Type</th>
<th>Model constraints</th>
<th>Physical Cultivated land</th>
<th>Physical Minimum forest area</th>
<th>Physical Maximum forest area PK 8</th>
<th>Physical Maximum forest area PK 12</th>
<th>Landscape Permanent grass (out of rotation)</th>
<th>Landscape Maximum area of annual crops and SRF area</th>
<th>Soil quality JB 1-3 + JB 11 (humus) of land area.</th>
<th>Soil quality JB 4-10 and 12 (calcareous) of land area.</th>
<th>Crop rotation Rape seed area of annual crop land (loamy)</th>
<th>Crop rotation Rape seed area of annual crop land (sandy)</th>
<th>Landscape Minimum share of clover grass, in rotation</th>
<th>Landscape Maximum area of SRF (willow), kha</th>
<th>Crop rotation Area limitation on sugar beet (and soil quality)</th>
<th>Landscape and biodiversity Crop mix, annual crops, sandy soils</th>
<th>Landscape and biodiversity Crop mix, annual crops loamy soils</th>
<th>Ground water N leaching (k t N/yr)</th>
<th>GHG N2O emission from cultivated land (kt N2O-N/yr)</th>
<th>Carbon balance - soil humus Straw for feed/animal husbandry</th>
<th>Social Timber/construction wood</th>
<th>Social Wheat grain reserved for food and feed, PJ</th>
<th>Social Oil seed rape reserved for food and feed, PJ</th>
<th>Social Sugar beets for sugar production, PJ</th>
<th>Social Grass for feed, PJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Model constraints</td>
<td>P100</td>
<td>3200</td>
<td>300</td>
<td>300</td>
<td>175</td>
<td>2425</td>
<td>1164</td>
<td>1261</td>
<td>111</td>
<td>0</td>
<td>200</td>
<td>5</td>
<td>46</td>
<td>934</td>
<td>1081</td>
<td>180</td>
<td>8</td>
<td>18</td>
<td>5</td>
<td>167</td>
<td>6</td>
<td>11</td>
<td>38</td>
</tr>
</tbody>
</table>

Scenario B

- **Food & feed 50% of scenario A**
- **Willow < 25% area**
- **Permanent grass 275 kha**
Crop yields

Net energy harvest yield

- W-wheat, sandy
- W-wheat, loamy
- Oilseed rape, sandy
- Oilseed rape, loamy
- Sugar beet
- Grass/clover
- Willow, sandy
- Willow, loamy
- Spruce, low yield
- Spruce, avg. Yield

GJ ha⁻¹ Yr⁻¹
Energy output:input ratio

- W-wheat, sandy
- W-wheat, loamy
- Oilseed rape, sandy
- Oilseed rape, loamy
- Sugar beet
- Grass/clover
- Willow, sandy
- Willow, loamy
- Spruce, low yield
- Spruce, avg. Yield
Biomass feedstock cost

- Rape, sandy: 25.0 €/GJ
- Wheat, sandy: 20.0 €/GJ
- Sugar beet: 15.0 €/GJ
- Rape, loamy: 10.0 €/GJ
- Wheat, loamy: 5.0 €/GJ
- Wood, sandy: 0.0 €/GJ
- Wood, average: 0.0 €/GJ
- Willow, sandy: 0.0 €/GJ
- Willow, loamy: 0.0 €/GJ
- Diesel oil index (2005=100)
Bioenergy yield

Scenario/ oil index

100%food&feed 50%food&feed

- Biogas
- RME
- Ethanol
- CHP

100% food & feed
50% food & feed
Nitrogen load from cultivated land

- Reduction in N use and thus in N leaching and in N$_2$O losses

[Graph showing nitrogen load from cultivated land with labels for nitrogen use, NO3-N leaching, and N2O-N emission.]
Bioenergy future scenarios

<table>
<thead>
<tr>
<th></th>
<th>AGR</th>
<th>FOR</th>
<th>WASTE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PJ yr⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>5</td>
<td>25</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td>Scenario</td>
<td>82</td>
<td>32</td>
<td>33</td>
<td>147</td>
</tr>
<tr>
<td>EEA, 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>17</td>
<td>4</td>
<td>96</td>
<td>117</td>
</tr>
<tr>
<td>2030</td>
<td>4</td>
<td>8</td>
<td>92</td>
<td>105</td>
</tr>
<tr>
<td>Our study, Oil index 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%FF</td>
<td>0</td>
<td>21</td>
<td>32</td>
<td>53</td>
</tr>
<tr>
<td>50%FF</td>
<td>6</td>
<td>125</td>
<td>18</td>
<td>149</td>
</tr>
</tbody>
</table>
Biomass in EU27

Potential self sufficiency (2030 supply vs 2005 consumption)

Total: 8 – 25 EJ yr⁻¹

After deWit et al. 2009, figure 6, Biomass & bioenergy
The Refuel project, www.refuel.eu
Conclusion

- More biomass for bioenergy at increasing oil prices
- Domestic bioenergy potentials are limited due to land and environmental constraints (~20% of primary energy use)
- Increased biomass imports necessary to meet strategic goals of bioenergy supply
- Large N load reductions possible by growing more short rotation forest (willow) or by planting high forest
More about the model

Optimization of bioenergy yield from cultivated land in Denmark

Ingeborg Callesena,*, Poul Erik Grohnheitb, Hanne Østergårda

a Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark – DTU, Building 301, P.O. Box 49, Frederiksbergvej 399, DK-4000 Roskilde, Denmark
b Systems Analysis Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark – DTU, Building 110, P.O. Box 49, Frederiksbergvej 399, DK-4000 Roskilde, Denmark