Electrochemical Investigation of The Catalytical Processes During Sulfuric Acid Production.

Bjerrum, Niels; Petrushina, Irina; Berg, Rolf W.

Published in:
Journal of The Electrochemical Society

Link to article, DOI:
10.1149/1.2044197

Publication date:
1995

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Electrochemical Investigation of the Catalytical Processes in Sulfuric Acid Production

N. J. Bjerrum,* I. M. Petrushina, and R. W. Berg

Materials Science Group, Chemistry Department A, The Technical University of Denmark, DK-2800 Lyngby, Denmark

ABSTRACT

The electrochemical behavior of molten K$_2$S$_2$O$_7$ and its mixtures with V$_2$O$_5$ [2-20 mole percent (m/o) V$_2$O$_5$] was studied at 440°C in argon, using cyclic voltammetry on a gold electrode. The effect of the addition of sulfate and lithium ions on the electrochemical processes in the molten potassium pyrosulfate was also investigated. The potential window for pure molten V$_2$O$_5$ was estimated to be 4.2 V, being limited by the S$_2$O$_4^{2-}$ oxidation and reduction. The oxidation of SO$_4^{2-}$ to oxygen is reversible in the basic melt. It is found that V(V) electroreduction proceeds in two steps. The first reduction stage (V(V) → V(IV)), starting at 0.7-0.8 V vs. Ag/Ag, is reversible for V$_2$O$_5$ concentrations lower than 5 m/o and at potential scan rates less than 200 mV/s. For all studied compositions, the first reduction stage is a one-electron reaction. The second reduction stage (V(IV) → V(III)), starting at 0.1-0.2 V, is irreversible and under ohmic control at all studied V$_2$O$_5$ concentrations. The presence of Li$_2$SO$_4$ causes a noticeable depolarization effect on the V(V) reduction and the V(IV) oxidation.

Introduction

The molten V$_2$O$_5$-M$_2$S$_2$O$_7$ system (M is an alkali metal) is used as a catalytic medium for sulfur dioxide oxidation with oxygen or air, and this has been a subject of numerous publications for the last fifty years. However, the mechanism of this catalytical process is not clearly understood, the following problems remaining unsolved: (i) The number of the catalytical reaction steps involved has not been defined; two-step, three-step, and four-step mechanisms have been proposed. (ii) The structure of catalytically active V(V) species has to be elucidated. Neither proposed monomeric, nor dimeric, structure of the dioxovanadium complexes has been convincingly determined. (iii) The first unsolved problem also leads to a question concerning the possibility of the V(V) two-stage reduction (both to V(IV) and V(III) species). The precipitation of solid V(III) compounds in the liquid-gas M$_2$S$_2$O$_7$-V$_2$O$_5$-SO$_2$/SO$_3$/N$_2$ system (where M is Na, K, or Cs), has been proven by chemical and x-ray analysis. Electrochemical investigations in the V$_2$O$_5$-K$_2$S$_2$O$_7$ melt could neither prove nor disprove the V(IV) → V(III) reduction reaction. The nature of the promoting effect of alkali ions on the catalytic activity of the V$_2$O$_5$-K$_2$S$_2$O$_7$ melt is unknown. It was found in practice that the efficiency increased with the alkali atomic number (or ionic radius) and the presence of sodium cations had a promotive effect at low temperatures (close to the point of catalyst deactivation, i.e. 440°C) and that cesium ions decreased the temperature of catalyst deactivation.

Therefore, investigations of the mechanism of catalytical reactions in the molten V$_2$O$_5$-M$_2$S$_2$O$_7$ system are still of great significance. By using electrochemical techniques, the oxidation and the reduction parts of the complex chemical reaction can be separated; moreover, some oxidation...
and reduction agents (such as O₃, SO₃, and SO₂) can be excluded, thus simplifying the investigation. As a result, useful information for the mechanism could be obtained.

The electrochemical behavior of molten potassium pyrosulfate and its mixtures with potassium sulfate and vanadium pentoxide was studied by Durand et al., Comtat et al., Frank and Winnick, Scott et al., and Dojcinovic et al. in different gas atmospheres. From these references, large disagreements can be seen between the experimental data, and the conclusions on the width of the potential window and the nature of the electrochemical processes involved. According to Durand et al., the potential window of the gold electrode in molten potassium pyrosulfate at 430°C was 0.41 V wide for the acidic melt and 0.51 V wide for the basic melt, with a difference as high as 0.52 V between acidic and basic cathodic limits. The anodic limit was ascribed to gold electrode dissolution in the acidic melt, and in the basic melt to the S₂O₅²⁻ ion oxidation with oxygen evolution. The cathodic limit was ascribed to a reduction of S₂O₃²⁻ (or SO₃²⁻). These explanations have not been tested experimentally, and the difference in the potential windows of the acidic and basic K₂S₂O₇ melts seems questionable being compared with the results obtained by Comtat et al., Frank and Winnick, and Dojcinovic et al. Thus Comtat et al. observed the same anodic limit for the basic electrolyte at a platinum and a gold electrode. Frank and Winnick also obtained an approximately 0.8 V wide potential window at a gold electrode in Na₂SO₄/air/SO₃/Na₂O/N₂, in both acidic and basic molten potassium pyrosulfate. Oxidation of SO₃²⁻ was observed at an anodic limit of 0.8-0.0 V vs. Ag/Ag⁺, whereas S₂O₅²⁻ reduction was seen as the cathodic limiting reaction at 0.25 V. However, the experiments of Frank and Winnick were done at 370-400°C, i.e., at temperatures lower than the melting point of dry K₂S₂O₇ (i.e., 418.5°C). This indicates the presence of water in the molten potassium pyrosulfate, and therefore a possible water effect on the results of the experiments should be taken into account. These considerations could also explain the 1.0 V difference between the potentials of the cathodic limiting reactions for the pyrosulfate melts given by Frank and Winnick and Dojcinovic et al.

Taking into account that SO₃²⁻ ions are present in potassium pyrosulfate melt owing to the dissociation reaction (where the former SO₃ dissolves in molten potassium pyrosulfate through the formation of SO₃²⁻ solvate complexes)

\[2S₂O₃²⁻ ↔ S₂O₅²⁻ + SO₃²⁻ \]

[1]

the electrochemical characteristics of molten alkali sulfates are also of interest. Alkali sulfates have been studied more extensively and carefully than the pyrosulfates.

The electrochemical behavior of solutions of V₂O₅ and VO(SO₄)₂ 3.5H₂O [0.25-1.0 mole percent (m/o)] in molten potassium pyrosulfate was investigated by Durand et al. by using gold electrodes. Frank and Winnick have studied the electrochemistry of VO₂(SO₄)₂ in Na₂SO₄/O₂/N₂ or Na₂SO₄/SO₂/N₂ atmospheres, in both acidic and basic molten potassium pyrosulfate. Oxidation of SO₃²⁻ was observed at an anodic limit of 0.8-0.0 V vs. Ag/Ag⁺, whereas S₂O₅²⁻ reduction was seen as the cathodic limiting reaction at 0.25 V. However, the experiments of Frank and Winnick were done at 370-400°C, i.e., at temperatures lower than the melting point of dry K₂S₂O₇ (i.e., 418.5°C). This indicates the presence of water in the molten potassium pyrosulfate, and therefore a possible water effect on the results of the experiments should be taken into account. These considerations could also explain the 1.0 V difference between the potentials of the cathodic limiting reactions for the pyrosulfate melts given by Frank and Winnick and Dojcinovic et al.

The disagreements concerning the V(IV) → V(III) reaction stage, 9,11,12 may be explained on the basis of different contents of water in the melts. The potential window could, depending on the level of moisture, be too narrow to obtain the second vanadium reduction wave (the difference between V(IV) → V(III) potentials can exceed 0.68 V). 13

In short, additional electrochemical measurements should be made under dry conditions and in an inert gas atmosphere (to exclude possible oxygen effect on the potential window of molten potassium pyrosulfate). The present study was conducted to provide useful electrochemical kinetic data for molten potassium pyrosulfate solutions with a wide concentration range of V₂O₅, and to have a good understanding of the catalytic mechanism.

Experimental

Pure and dry K₂S₂O₇ was obtained by thermal decomposition of K₂S₂O₇ (Merck, Pro Analysis, maximum 0.001% N) as described earlier. K₂S₂O₅ (Merck, Suprapur) and Li₂SO₄ (Sigma, 99%) were dried at 500°C overnight. V₂O₅ from Cerac (99.9% pure) and Ag₂SO₄ from Heraeus (99.9% pure) were used without further purification. All sample preparation and handling were performed in an argon-filled glove box (Vacuum Atmospheres Inc.), with a measured oxygen and water concentration less than 10 ppm.

Cyclic voltammetry measurements were performed in a hermetically closed three-electrode quartz cell with an epoxy resin-joined and water-cooled stainless steel head (Fig. 1). The reference electrode was a silver wire placed in a Pyrex cylindrical chamber with a Pyrex frit bottom. A melt of potassium pyrosulfate saturated with silver and potassium sulfates was used as the electrolyte in the reference silver electrode chamber. This reference system has been proven to have a stable potential in the studied temperature range.

A gold wire sealed in a Pyrex tube served as the working electrode. A gold-wire spiral served as counter-electrode. It has been shown that gold is stable in both acidic and basic K₂S₂O₇ melts, and therefore gold was used as the electrode material in previous electrochemical investigations.

After the cell was filled with electrolyte and hermetically closed in an argon glove box, it was placed in a vertical aluminum-block furnace, with temperature controlled within ±0.1°C. The components of the melt could be mixed by automatic rocking of the furnace. The temperature of the melt was measured by a calibrated Chromel-Alumel thermocouple in a Pyrex case placed inside the electrochemical cell.
Voltammetric measurements were carried out with a Schlumberger Model SI1286 electrochemical interface, and a Graphtec Model WX3000-1 X-Y Recorder.

Results and Discussion
Voltammetric Measurements in the K$_2$S$_2$O$_7$ and K$_2$S$_2$O$_7$-K$_2$SO$_4$ Melts at 440°C

A characteristic cyclic voltammogram obtained at a gold electrode in molten K$_2$S$_2$O$_7$ in argon is shown in Fig. 2. From Fig. 2, it can be seen that the potential window of the potassium pyrosulfate is limited by a gradual reduction at -1.1 V and a steep oxidation at 1.0 V. In addition, four minor waves can be seen inside the electrochemical window: three reduction waves (A, B, and D) and one oxidation wave (C). The processes corresponding to the minor waves could affect the potential window of molten potassium pyrosulfate, and therefore their identification is important.

The dependence of the A, C, and D peak parameters on the potential scan rate (V_s) is shown in Fig. 3-5. All the peak currents depend linearly on the square root of the potential scan rate, and all the peak potentials are linearly dependent on the logarithm of the potential scan rate. It should be noticed that wave A becomes suppressed during cycling (Fig. 6).

The effect of melt acidity was also studied, by adding potassium sulfate to the potassium pyrosulfate. A comparison of the voltammetric characteristics of molten K$_2$S$_2$O$_7$ and K$_2$S$_2$O$_7$-K$_2$SO$_4$ systems (saturated with K$_2$SO$_4$ according to the data of Ref. 21) is made in Fig. 7. It is seen that in basic (SO$_4^{2-}$-rich) melts, the peak potential of reaction C moves in the positive direction and becomes less sharp. A new anodic reaction (E) appears at approximately 0.9 V. For the reactions C, D, and E in the basic melt, peak currents depend linearly on the square root of the potential scan rate, and peak potentials are independent of the potential scan rate in the 25-200 mV/s region (for E at the 50-100 mV/s region) (Fig. 8 and 9). For reaction A, the peak current and peak potential are linearly dependent on the square root and logarithm of the potential scan rate, respectively (Fig. 8 and 9).

According to Nicholson and Shain, Eq. 2 describes the dependence of the peak potential of the irreversible process on the potential scan rate

$$E_p = E^0 - \frac{RT}{\alpha n_F} \left[0.78 - \ln k_s + 1/2 \ln \frac{D k_s n_F V_s}{RT} \right]$$

where E_p is the peak potential, E^0 is the standard potential, k_s is the specific rate constant, α is the transfer coefficient; n_s is the number of electrons taking part in the irreversible electrochemical reaction; D is the diffusion coefficient; R is the gas constant; F is the Faraday constant; T is absolute temperature.

The linear dependence of the peak potential on the logarithm of the potential scan rate is an indication of irreversibility of the electron transfer stage of the electrochemical reaction. In the case of a reversible reaction, the peak potential should be independent of the potential scan rate. It is seen from Fig. 4-6 that the electrochemical reactions A, C, and D are irreversible. Therefore we can use the Nicholson and Shain equation (Eq. 3), to calculate the value of n_F for the studied electrochemical reactions

$$E_p - E_{p/2} = -1.857 \frac{RT}{\alpha n_F} F$$

where E_p and $E_{p/2}$ are peak and half-peak potentials, respectively.

The n_F values obtained for A, C, and D peaks using Eq. 3 at different potential scan rates are given in Table I. By assuming as usual that α equals 0.5, the numbers of electrons participating in A, C, and D processes are estimated to be 3 (the calculated n_s are 3.27, 2.70, 2.70, and 2.76 at 200, 300, 400, and 500 mV/s, respectively), 3 (3.27, 3.27, 2.87, and 2.87) and 2 (2.08, 1.91, 1.76, and 1.76), respectively.

The number of electrons participating in the reversible electrochemical reaction can be calculated using Eq. 4
The n values for the reversible (at least at low potential scan rates) electrochemical reactions, C and E, are given in Table I. For reaction C, these data are in agreement with a three-electron process obtained in the acidic melt ($n = 3.04$, 3.43, and 3.04 at 50, 75, and 100 mV/s, respectively). Process E is evidently a two-electron reaction ($n = 2.28$ and 2.36 for 50 and 100 mV/s, respectively).

In the investigated electrolyte system a three-electron process is possible only when gold participates in the reaction. Therefore, from our data and the results of Durand et al.,15 wave C can be ascribed to the electro-oxidation of gold according to reactions Eq. 5A and 5B.

For acidic melt

$$\text{Au} + 2n\text{S}_2\text{O}_7^{2-} \rightarrow \text{Au(SO}_4)_2^{-2n} + n\text{S}_2\text{O}_7^{2-} + 3e^- \quad [5A]$$

For basic melt

$$\text{Au} + n\text{SO}_4^{2-} \rightarrow \text{Au(SO}_4)_3^{-2n} + 3e^- \quad [5B]$$

The kinetics of oxidation is probably dependent on the chemical reaction forming the gold sulfate complex (so-called EC-mechanism). According to the theoretical investigation of Nicholson and Shain,30 the following slow chemical reaction will be able to overrule the reversible (i.e., quick) electrochemical reaction from the oxidation-reduction equilibrium. In the case of a fast following chemical reaction an anodic voltammogram for the reversible electrochemical reaction will usually be obtained but without the opposite cathodic process. However, even in this case, we still might observe a voltammetric picture of an EC-mechanism with slow chemical reaction at high potential scan rates. In fact, as seen in Fig. 7 and 9, the electrochemical reaction C is irreversible in the acidic melt (Eq. 5A) and reversible in the basic melt, where the concentration of SO$_4^{2-}$ ions is sufficiently high (Eq. 5B). The related cathodic wave is absent for 5B, and at the potential scan rates higher than 100 V/s this process becomes irreversible.
The reaction related to wave A, corresponding to gold participation, is eliminated during cycling. Evidently it is a surface gold–oxide reduction, which can be described by the following equation

\[
\frac{1}{2} \text{Au}_2\text{O}_3 + 3/2 \text{S}_2\text{O}_7^{2-} + 3e^- \rightarrow \text{Au} + 3\text{SO}_4^{2-}
\]

with a standard potential of +0.774 V vs. Ag/Ag⁺. In a voltammetric study in the molten (Li, K)₂S₂O₄ at 625°C, Burrows and Hills have found a SO₃ (or S₂O₅⁻) electroreduction wave at about -0.7 V vs. Ag/Ag⁺, depending on the treatment of platinum. A new oxidation wave, I, corresponding to the reduction wave G, becomes noticeable at 10 m/o of V₂O₅.

The change in kinetics of the reaction given by Eq. 11 at 5 m/o of V₂O₅ is shown in Fig. 10. It is seen that two new cathodic waves (F and G) and one anodic wave (H, which obviously is an oxidation of the first reduction product) appear in the presence of V₂O₅. The dependence of the F, G, and H wave–parameters on the potential scan rate is shown in Fig. 11. The F and H peak currents depend linearly on the square root of the potential scan rate, and the peak potentials are virtually independent on the potential scan rate (Fig. 15 and 16). For a melt with 2 m/o V₂O₅, the ratio of the first reduction (F) and the oxidation (H) peak currents is close to unity (Table II). The voltammetric characteristics of the K₂S₂O₇–V₂O₅ system of formal V₂O₅ concentrations up to 20 m/o are shown in Fig. 12–16 and in Table II. The F peak current is linearly dependent on the formal V₂O₅ concentration. Starting from 5 m/o of V₂O₅, the F and H peak potentials depend linearly on the logarithm of the potential scan rate. The ratio between F and H peak currents decreases with the concentration of V₂O₅, holding a minimum at 5 m/o. The reduction wave G, instead of a peak, shows a linear current–potential dependence for high potential scan rates. A new oxidation wave, I, corresponding to the reduction wave G, becomes noticeable at 10 m/o of V₂O₅.

The electrochemical behavior of V₂O₅ in molten potassium pyrosulfate at a gold electrode was studied in a wide concentration range. The voltammetric curve obtained for 2 m/o of V₂O₅ is shown in Fig. 10. It is seen that two new cathodic waves (F and G) and one anodic wave (H, which obviously is an oxidation of the first reduction product) appear in the presence of V₂O₅. The dependence of the F, G, and H wave–parameters on the potential scan rate is shown in Fig. 11. The F and H peak currents depend linearly on the square root of the potential scan rate, and the peak potentials are virtually independent on the potential scan rate (Fig. 15 and 16). For a melt with 2 m/o V₂O₅, the ratio of the first reduction (F) and the oxidation (H) peak currents is close to unity (Table II). The voltammetric characteristics of the K₂S₂O₇–V₂O₅ system of formal V₂O₅ concentrations up to 20 m/o are shown in Fig. 12–16 and in Table II. The F peak current is linearly dependent on the formal V₂O₅ concentration. Starting from 5 m/o of V₂O₅, the F and H peak potentials depend linearly on the logarithm of the potential scan rate. The ratio between F and H peak currents decreases with the concentration of V₂O₅, holding a minimum at 5 m/o. The reduction wave G, instead of a peak, shows a linear current–potential dependence for high potential scan rates. A new oxidation wave, I, corresponding to the reduction wave G, becomes noticeable at 10 m/o of V₂O₅.

Hence, the first reduction–oxidation process (waves F and H) seems to be reversible below 5 m/o of V₂O₅ but irreversible at higher concentrations. It can be seen from Table II that at all studied concentrations both peaks F and H are one–electron reactions. It means that these waves are caused by the V(V) → IV and V(IV) → V(V) reactions, and that only one vanadium atom participates in these processes. They may be described by Eq. 11.

\[
\begin{align*}
\text{VO(SO}_4\text{)}^{2-} + 2\text{S}_2\text{O}_7^{2-} & \rightarrow \text{VO}_2\text{SO}_4\text{SO}_3^{2-} + e^- \quad [11A] \\
\text{VO}_2\text{SO}_4\text{SO}_3^{2-} & \rightarrow \text{VO}_2\text{SO}_4\text{SO}_3^{2-} + e^- \quad [11B]
\end{align*}
\]

The change in kinetics of the reaction given by Eq. 11 at V₂O₅ concentrations higher than 5 m/o could be explained by an increase in degree of dimerization or of polymerization of the V(IV) species, proceeding via a mechanism of electrochemical desorption, in which a slow charge transfer step is usually involved.⁴¹

Assuming (i) the potential difference between F and G reactions, (ii) the electrochemical behavior of the V(IV) cathodic materials, and (iii) the chemical identification of V(V) species as the products of the reduction of V(V) under the conditions of commercial sulfuric acid production, we propose a V(IV) → V(III) reduction as an explanation for wave G. The shape of the voltammetric curve can be explained by the low solubility of the V(IV) and V(III) compounds.
Fig. 7. Cyclic voltammograms measured with gold electrodes at 440°C and 100 mV/s in K$_2$S$_2$O$_7$ (1) and K$_2$S$_2$O$_7$ saturated with K$_2$SO$_4$ (2) melts.

Fig. 8. Cyclic voltammograms measured with gold electrodes in molten K$_2$S$_2$O$_7$ saturated with K$_2$SO$_4$ at 440°C and curve 1, 25; curve 2, 50; curve 3, 75; curve 4, 100 mV/s.

pounds at 440°C, and therefore one has an ohmic control of reaction G.

Starting from 10 m/o of V$_2$O$_5$, a new oxidation wave (wave I) appears on the voltammetric curves. This wave can be related to a V(III) → V(IV) reaction considering the reversible performance of the VO$_2$ secondary battery cathodes.

Figures 14-16 (and Table II) demonstrate the voltammetric effect of adding 5.5 m/o Li$_2$SO$_4$ to a 10 m/o V$_2$O$_5$ solution in a potassium pyrosulfate melt. After addition of lithium sulfate, a white precipitate appeared in the melt. Taking into account the higher solubility of Li$_2$SO$_4$ than K$_2$SO$_4$ (which is 4.64 m/o at 440°C) in molten K$_2$S$_2$O$_7$ and a possible exchange equilibrium (Eq. 12), in the reciprocal system

\[\text{Li}_2\text{SO}_4 + \text{K}_2\text{S}_2\text{O}_7 \rightarrow \text{Li}_2\text{S}_2\text{O}_7 + \text{K}_2\text{SO}_4 \]

(12)

we assume that all the added lithium sulfate is practically present in the form of lithium pyrosulfate in the K$_2$S$_2$O$_7$ melt.

It can be seen that the Li$^+$ ion has a promoting effect on both oxidation and reduction processes, with the depolarization being almost three times higher for the V(V) → V(IV) reduction than for the V(IV) → V(V) oxidation. The ratio between the anodic and the cathodic peak currents is closer to unity in the presence of Li$_2$SO$_4$ in the studied electrolytes. It should also be noted that saturation of a K$_2$S$_2$O$_7$ melt by potassium sulfate has only a marginal effect on the V(V) e→ V(IV) process.

The thermodynamical characteristics of the electrochemical reactions of Eq. 11A and 11B obviously depend on the alkali cation nature: the smaller the cation radius the higher its polarization effect on the complex vanadium par-
Fig. 9. Peak potential (a) and peak current (b) of waves A, C, and E as function of potential scan rate obtained in molten K$_2$S$_2$O$_7$ saturated with K$_2$SO$_4$ with gold electrodes and at 440°C.

Table I. Peak and half-peak potential difference, $E_p - E_{1/2}$, and the number of participating electrons, n, for the irreversible A, C, D reactions and the number of participating electrons, n, for the reversible C and E reactions obtained in molten K$_2$S$_2$O$_7$ and K$_2$S$_2$O$_7$-K$_2$SO$_4$ systems at 440°C.

<table>
<thead>
<tr>
<th>Electrochemical reaction</th>
<th>Potential scan rate, V/s</th>
<th>$E_p - E_{1/2}$, V</th>
<th>α_n</th>
<th>n, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.200</td>
<td>0.070</td>
<td>1.637</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>0.085</td>
<td>1.348</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>0.400</td>
<td>0.085</td>
<td>1.348</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>0.083</td>
<td>1.380</td>
<td>2.76</td>
</tr>
<tr>
<td>C</td>
<td>0.200</td>
<td>0.070</td>
<td>1.637</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>0.070</td>
<td>1.637</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>0.400</td>
<td>0.080</td>
<td>1.433</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>0.080</td>
<td>1.433</td>
<td>2.87</td>
</tr>
<tr>
<td>D</td>
<td>0.100</td>
<td>0.110</td>
<td>1.042</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>0.200</td>
<td>0.120</td>
<td>0.955</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>0.130</td>
<td>0.878</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>0.400</td>
<td>0.130</td>
<td>0.878</td>
<td>1.78</td>
</tr>
<tr>
<td>C</td>
<td>0.050</td>
<td>0.045</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.075</td>
<td>0.045</td>
<td>3.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>0.045</td>
<td>3.94</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.050</td>
<td>0.060</td>
<td>2.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>0.058</td>
<td>2.36</td>
<td></td>
</tr>
</tbody>
</table>

α_n is the product of the transfer coefficient and the number of electrons participating in the irreversible A, C, D reactions.

1. Most cesium salts have supercooling and glass-forming tendencies, which are more pronounced for their near-eutectic mixtures with strongly polarizing cation salts (lithium, sodium, or small alkali-earth ions): the more diversity and number of particles in a multicomponent system, the higher the glassforming tendency (so-called confusion principle). Moreover, the solubility of the vanadium species will be higher in the pyrosulfates with weakly polarizing cations, VO$_4^-$ and VO$_5^{2-}$ are strong polarizing...
Table II. \(\alpha n \) for the irreversible and the number of participating electrons, \(n \), for the reversible \(V(V) \leftrightarrow V(IV) \) reaction as well as \(\frac{I_p}{I_p^*} \) in the molten \(\text{K}_2\text{S}_2\text{O}_7-\text{V}_2\text{O}_5 \) system at 440°C and 100 mV/s.

<table>
<thead>
<tr>
<th>m/o \text{V}_2\text{O}_5</th>
<th>Reaction</th>
<th>(n)</th>
<th>(\alpha n_a)</th>
<th>(\frac{I_p}{I_p^*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Anodic</td>
<td>0.90</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Cathodic</td>
<td>0.75</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>3</td>
<td>Anodic</td>
<td>0.87</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Cathodic</td>
<td>0.71</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>5</td>
<td>Anodic</td>
<td>0.76</td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>Cathodic</td>
<td>0.53</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>10</td>
<td>Anodic</td>
<td>0.71</td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>Cathodic</td>
<td>0.45</td>
<td></td>
<td>0.68</td>
</tr>
<tr>
<td>20</td>
<td>Anodic</td>
<td>0.55</td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>Cathodic</td>
<td>0.38</td>
<td></td>
<td>0.79</td>
</tr>
<tr>
<td>10</td>
<td>Anodic</td>
<td>0.55</td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td>5.5 m/o \text{Li}_2\text{SO}_4</td>
<td>Cathodic</td>
<td>0.38</td>
<td>0.79</td>
<td></td>
</tr>
</tbody>
</table>

\(\alpha n_a \) is the product of the transfer coefficient and the number of electrons participating in the irreversible reaction.

Cations, and tend to form complexes with the solvent. Therefore, the less competition for the solvent anions, the higher solubility of the vanadium compounds.

2. The electroconductivity of the vanadium-containing pyrosulfate melts should have noticeable effect on their catalytic activity. Large alkali cations have less tendency to form clusters. They could have a mobility equal to that for small cations (lithium or sodium), the so called Chemla effect. Moreover, for molten salts with easily polarizable molecular anions, the electroconductivity of cesium or potassium salts increases in the presence of small amounts of lithium (or sodium) salts. This can be explained by the weakening of the Cs⁺-anion bonding in the presence of highly polarizing cations.

In industrial catalysis, the activation effect of small amounts of sodium sulfate is well known. This effect can be explained as a change in the parameters of the catalytic reaction by highly polarizing Na⁺ ions in the catalytically active vanadium complexes.

There is no indication in the literature that there would be a beneficial effect of the addition small amounts of Li⁺ (sulfate or pyrosulfate). Large amounts of lithium pyrosulfate has shown no or a negative promoting effect in a series of alkali metal pyrosulfates. If our explanation of the Na⁺...
promoting effect is correct, and the Li^{+} activation effect on the electrochemical $\text{V(\text{V})} \leftrightarrow \text{V(\text{IV})}$ processes is taken into account, we would expect a promoting effect for diluted Li^{+} solutions, also for industrial catalysts.

Conclusions

The potential window of pure molten $\text{K}_{2}\text{SO}_{3}$ was determined to be 2.1 V, being limited by SO_{3}^{2-} oxidation and reduction. The formation of oxygen in basic melts proceeds reversibly at more negative potentials than in acidic melts where the process is irreversible.

The V_{2}O_{5} reduction process includes two stages: $\text{V(\text{V})} \rightarrow \text{V(\text{IV})}$ and $\text{V(\text{IV})} \rightarrow \text{V(\text{III})}$. The first stage is reversible up to a fraction of 5 m/o of V_{2}O_{5}, and is a one-electron reaction at all studied concentrations (i.e., up to 20 m/o). Hence, only one vanadium atom is involved in the reaction.

The presence of Li^{+} ions causes a noticeable acceleration of the $\text{V(\text{V})}$ electroreduction.

Acknowledgments

This investigation has been supported by the EEC BRITE-EURAM II Project BRE2.CT93.0447 and the Danish Natural Science Research Council. The authors thank R. Fehrmann for the valuable discussion.