Cyclic Voltammograms From First Principles

Karlberg, Gustav; Jaramillo, Thomas; Skulason, Egill; Rossmeisl, Jan; Bligaard, Thomas; Nørskov, Jens Kehlet

Published in:
Meeting Abstracts - Electrochemical Society

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Cyclic voltammograms from first principles

G. S. Karlberg1, T. F. Jaramillo2, E. Skúlason1, J. Rossmeisl1, T. Bligaard1, and J. K. Nørskov1

1 Center for Atomic-scale Materials Design
2 Center for Individual Nanoparticle Functionality
NanoDTU, Department of Physics,
Technical University of Denmark,
DK-2800 Lyngby, Denmark

Cyclic voltammetry is perhaps the most important and widely utilized technique in the field of analytical electrochemistry. By measuring the current through an electrochemical cell as the cell potential is cycled an abundance of quantitative information regarding surface electrochemical phenomena can be obtained. For over 40 years, general and specific quantitative mathematical relationships have been developed to describe spectra recorded using cyclic voltammetry (1,2). Such expressions are crucial in the interpretation of measured data; however, in and of themselves such expressions offer little predictive ability.

We will here present a straightforward first principles method based on density functional theory calculations for generating theoretical cyclic voltammograms (CVs). The method is applied to a calculation of the CVs for hydrogen under-potential deposition (H-UPD) over Pt(111) and Pt(100) surfaces. The theoretical CVs show excellent agreement with experimental measurements, indicating that we have now a direct link between the energetics of adsorption processes on metal surfaces and experimental CVs.

The method will also be extended to include cyclic voltammograms for water dissociation on Pt(111) and Pt3Ni(111). The connection between the onset of water dissociation and the activity of the material for the oxygen reduction reaction as given by a previously described theoretical model (3) will be discussed.

This work was supported by the Danish Research Council for the Technical Sciences and the European Community program FCANODE. The Danish Center for Scientific Computing contributed funding for the computer time.

References: