Electrochemical studies of the molten system K2NbF7-Na2O-Nb-(LiF-NaF-KF)(eut) at 700 degrees C

Rosenkilde, C.; Vik, A.; Østvold, T.; Christensen, Erik; Bjerrum, Niels

Published in:
Journal of The Electrochemical Society

Link to article, DOI:
10.1149/1.1393975

Publication date:
2000

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Various voltammetric methods have been used to study FLINAK (LiF-NaF-KF eutectic melt 46.5-11.5-42 mol %) melts containing about 1 mol % niobium-fluoro and -oxofluoro complexes with Nb in oxidation states (V) and (IV) at 700°C and varying amounts of Na$_2$O in the range 0 < n$_2$O/n$_{Nb}$ < 7. A slow, spontaneous reduction of Nb(V)-fluorides to Nb(IV)-fluorides was observed in the absence of Nb metal. With a stoichiometric amount of Nb metal, Nb(IV) is reduced rapidly to Nb(IV) according to the reaction 4NbF$_7^{2-}$ + Nb = 5NbF$_6^{4-}$. The solubilities of Nb$_2$O$_3$ and KNbO$_3$ in FLINAK were measured and found to be 1.8 and 0.13 mol %, respectively. The following reactions probably occur when increasing amounts of oxide are added to a melt originally containing NbF$_5$ [V] : NbF$_5$ [V] + O$_2$ \rightarrow NbF$_4$ [IV] + F$_2$, NbF$_4$ [IV] + O$_2$ \rightarrow NbF$_3$ [III] + F$_2$, and NbF$_3$ [III] + O$_2$ \rightarrow NbF$_2$ [II] + F$_2$. At oxide to niobium molar ratios higher than three, AlkNbO$_3$ (s) redissolves, and at n$_2$O/n$_{Nb}$ > 4, all Nb and O added are dissolved. Strong indications of the existence of the oxygen rich Nb(V)/OF complexes and O$^{2-}$ ions in FLINAK at n$_2$O/n$_{Nb}$ > 4 have been found. An equilibrium/sampling/analysis method was also used to study this system without Nb metal added. The results mainly agree with the results of the voltammetric studies. However, no indications of spontaneous reduction of Nb(IV) to Nb(V) were observed, even after 24 h.

The chemical and electrochemical properties of niobium and tantalum in alkali-fluoride melts have been studied extensively during the last decade. The motivation for this work is mainly twofold. First, very high stability of niobium and tantalum against aqueous acids makes steel parts electroplated with these metals highly corrosion resistant and, consequently, useful for many purposes. Second, these systems are interesting from a scientific point of view due to the strong complex-forming ability of niobium and tantalum ions. Moreover, in these complexes, Nb and Ta may exist in various oxidation states. This, together with the complex-forming ability, leads to rather complicated chemical systems. In spite of a lot of previous work, both the chemistry and electrochemistry in fluoride and chloride melts containing oxides are still matters of discussion. Further investigations are therefore justified.

In the present study we have focused on the electrochemistry and bulk properties of niobium ions in FLINAK (LiF-NaF-KF eutectic melt 46.5-11.5-42 mol %) at 700°C. In particular, we have studied melts where niobium ions are in equilibrium with Nb metal and controlled amounts of oxide in the melt. This is interesting since niobium metal is present during electroreduction of Nb. Equilibrium between Nb ions in the melt and Nb metal will therefore be established.

Von Barner et al. investigated Nb(V)-fluorides and -oxofluorides in FLINAK by Raman spectroscopy, and the complexes NbF$_7^{2-}$, NbOF$_5^{2-}$, and NbOF$_4^{2-}$ were suggested to be stable in the melt. Indications of complexes even richer in oxygen were also given. Von Barner et al. did not determine, however, the oxide and niobium concentrations in the melt analytically. Due to the precipitation of AlkNbO$_3$ (Alk = Li$^+$, Na$^+$, or K$^+$) at molar ratios of oxide to niobium 2 < n$_2$O/n$_{Nb}$ < 3 and dissolution at n$_2$O/n$_{Nb}$ > 3 observed by Matthiesen et al., inaccurate molar ratios of oxide to niobium were probably given by von Barner et al. Matthiesen et al. studied Nb(IV) in FLINAK at various Na$_2$O concentrations up to n$_2$O/n$_{Nb}$ = 10. The Nb(IV) was prepared by in situ reduction of K$_2$NbF$_7$ with the stoichiometric amount of Nb metal. They found that the amounts of added and oxidized oxide in the melt were identical up to the molar ratio n$_2$O/n$_{Nb}$ = 1. Above this ratio, the Nb concentration in the melt decreased up to n$_2$O/n$_{Nb}$ = 2.2. Together with an observed slope lower than one of oxide analyzed vs. oxide added, the results indicated precipitation of a Nb(IV) oxide compound. The reaction 3NbOF$_5^{2-}$ + 2O$^{2-}$ \rightarrow NbOF$_5^{2-}$ + 2NbOF$_4^{2-}$ + 5F$^{-}$ was suggested to explain the results. In the composition region 2.2 < n$_2$O/n$_{Nb}$ < 3, Nb(IV) decreased even faster, and decreasing O$^{2-}$ concentrations were measured, indicating that a compound of the type Alk$_2$NbO$_3$ (s) was precipitating. At 3 < n$_2$O/n$_{Nb}$ < 4, the solid precipitate dissolved, and, according to stoichiometry, the dominant reaction was Alk$_2$NbO$_5$(s) + 2O$^{2-}$ + 4F$^{-}$ \rightarrow Alk$_2$NbOF$_7$(s) + 2F$_2$. Recently Vik et al. showed by Raman spectroscopy that a melt consisting of K$_2$NbF$_7$ in FLINAK with varying Na$_2$O concentrations up to n$_2$O/n$_{Nb}$ = 8 probably contained several Nb(IV)-O-F complexes with varying stoichiometry depending on the O/Nb molar ratio. For n$_2$O/n$_{Nb}$ < 1, the monomeric NbOF$_5^{2-}$ ion was present. For 1 < n$_2$O/n$_{Nb}$ < 2 both NbOF$_5^{2-}$ and NbOF$_4^{2-}$ occurred. At higher ratios it is possible that NbOF$_4^{2-}$, NbOF$_3^{2-}$, and corner shared NbO$_5$ octahedra linked together in a network are present in the melt.

Electrochemical work has shown that good Nb deposits were obtained from melts equilibrated with Nb metal and with small and controlled amounts of oxide present. It was further found that small amounts of oxide in the melt increased the current efficiency for the deposition process. In the present work the effect of larger amounts of oxide compared to the amount of Nb ions in the melt is studied. Since there has been some debate as to the stability of Nb-oxofluorides with niobium in oxidation states different from five, this matter has also been studied more closely. Previous voltammetric investigations in alkali fluorides have shown a reduction step belonging to the reduction of NbOF$_5^{2-}$ to a soluble product, e.g., a Na(IV)-oxofluoride complex. On the other hand, adding Nb metal to a melt containing NbOF$_5^{2-}$, Christensen et al. observed dissolution of Nb metal, indicating reduction of Nb(IV) in NbOF$_5^{2-}$ to a Nb(IV) species.

The reader will find some discrepancies in the results obtained with the different methods used in the present work. We have not been able to resolve these, but hope that the work presented will help the scientific community to resolve the discrepancies.

Experimental

Two experimental techniques have been used. The first method was based on equilibration, sampling, and analysis of the melt. The analysis of the samples was performed with inductively coupled plasma (ICP) for Nb and the carbothermal-reduction technique using LECO TC-436 for oxide in the melt. The experimental procedure has been published elsewhere. The electrochemical techniques involved cyclic voltammetry, linear sweep voltammetry, staircase
voltammetry, and square wave voltammetry. These methods are available through the use of a computer-controlled potentiostat/galvanostat model M273, Princeton Applied Research. All voltammograms were recorded with more than 85% of full ohmic (IR) compensation. The IR drop was measured with a Solartron 1255 HF frequency response analyzer connected to the PAR M273 potentiostat. The electrochemical cell was a glassy carbon crucible (Carbon-Lorraine V25, diam 50 mm) with a common three-electrode system. Platinum has proved to be inert in the melts, and therefore Pt quasi-reference (wire diam 0.5 mm), counter (sheet, area 2 cm²), and working (wire diam 0.5 mm) electrodes were employed. Working electrodes made of glassy carbon (SU2000, diam 1 mm) were also used to study oxidation of oxide-containing species. The electrodes were connected to stainless steel rods. The area of the working electrodes was determined by immersing the electrode at several depths and measuring a suitable voltammetric peak current at each depth. The immersion depth was controlled by a scaled micrometer screw. In this way a linear relationship between current and immersion depth was obtained. The current is proportional to the surface area of the electrode since the current density is the same. The relationship between the surface area and the immersion depth is thus given by \(A = A_0 + \pi dh \), where \(A_0 \) is the area when the electrode just dips into the electrolyte (at zero immersion), \(d \) is the electrode diameter, and \(h \) the immersion depth. \(A_0 \) is determined from the intercept of the line in a plot of area vs. immersion depth. \(A_0 \) is the sum of the area of the bottom of the electrode and the surface covered by the meniscus. The furnace used in the experiments was a water-cooled three-zone Kanthal wound vertical tubular furnace with a nickel inner tube. The temperature was measured with a type-K thermocouple positioned just outside the crucible. Figure 1 shows a drawing of the cell.

A Pt quasi reference is usually inferior to a proper reference electrode. In the highly corrosive niobium-containing fluoride melts, however, design of a true reference electrode that does not contaminate the melt has proved to be very difficult. Furthermore, in the presence of Nb(V), Nb(IV) ions, or Nb metal in the melt and at constant melt composition, the potential of the Pt quasi-reference electrode has proved to be stable for times long enough to allow recording of voltammograms with low sweep rates, i.e., several minutes. The Pt quasi-reference electrode was therefore found to be suitable for the present work, where the amount of impurities was to be kept at a minimum.

The observed spontaneous reduction of Nb(V)-fluorides to Nb(IV)-fluoride in the melt introduces some experimental problems. In the experiments where the Nb(V)-fluorides were studied electrochemically the experiments were performed as fast as possible to avoid significant amounts of Nb(IV) to form. In experiments where Nb(V) is to be reduced with Nb metal, the amount of Nb(V) in the melt shortly before addition of Nb metal must be known to calculate the amount of Nb metal dissolved according to Eq. 4. This is important since it is necessary to know the total amount of Nb ions in solution before starting additions of Na₂O. According to Eq. 4, the amount of Nb metal dissolved would be 1/4 the amount of Nb(V) added when there is no spontaneous reduction, but with spontaneous reduction less Nb metal is dissolved. Since the reduction of Nb(V) to Nb(IV) is much faster in the presence of Nb metal, one can, by knowing the amount of Nb(V) spontaneously reduced, calculate the precise amount of Nb metal dissolved. Since it is possible to monitor the degree of spontaneous reduction by voltammetry (cf. Fig. 6), the amount of Nb(V) reduced to Nb(IV) can be found. When necessary, this was done in the present voltammetric study.

All handling and weighing of the salts was performed in a dry box to avoid water contamination of the hygroscopic fluoride salts. The FLINAK mixture was prepared from recrystallized alkali fluorides (Merck, p.a.). K₂NaF₇ (>97% by analysis) was prepared according to Christensen et al., and NaN₂O (>98% by acid titration) prepared from Na₂O₂ according to Horsby. Nb was used as purchased (Goodfellow, >99%), as was Nb₂O₅ (CERAC, >99.95) and KNbO₃ (Hereaus, >99.8). The two latter salts were dried at 150°C before use. In the voltammetric studies, a crucible with 60 g of the alkali fluoride weighed according to the composition of FLINAK (LiF-NaF-KF: 46.5-11.5-42 mol %) was removed from the dry box and placed in the furnace, which was then evacuated. The furnace was left under vacuum at 350°C overnight. It was then filled with argon, and the temperature was raised to 700°C. An overpressure of 0.1 bar was maintained in the furnace by electronically controlled valves. Thus, the atmosphere in the furnace was practically the same during the whole experiment. The other salts were weighed in the dry box and removed from the box in an airtight container that was connected to the salt-addition tube. The salt-addition tube was built in such a way that neither the salt to be added nor the atmosphere in the furnace was in contact with air during addition.

The solubility studies using the equilibrium/sampling technique were performed in the same type of cell as described previously, but the furnace containing the cell was connected directly to a dry box. In this way all handling of salts was under the dry-box atmosphere. The FLINAK mixture was prepared from recrystallized alkali fluorides (Merck, p.a.). K₂NaF₇ (>97% by analysis) was prepared according to Christensen et al., and NaN₂O (>98% by acid titration) prepared from Na₂O₂ according to Horsby. Nb was used as purchased (Goodfellow, >99%), as was Nb₂O₅ (CERAC, >99.95) and KNbO₃ (Hereaus, >99.8). The two latter salts were dried at 150°C before use. In the voltammetric studies, a crucible with 60 g of the

Figure 1. Drawing of the experimental cell: (a) brass cover, (b) furnace inner nickel tube, (c) stainless steel rods connected to the lid, (d) stainless steel addition tube, (e) alumina insulation tubes, (f) thermocouple, (g) stainless steel connection piece, (h) platinum quasi-reference electrode, (i) glassy carbon working electrode, (j) platinum working electrode, (k) platinum counter electrode, (l) glassy carbon crucible.
The solubility studies were done at NTNU in Norway, while the electrochemical work was done at DTU in Denmark.

Results

Voltammograms of oxide-free melts.—Figure 2 shows a voltammogram of a FLINAK melt containing 0.8 mol % K₂NbF₇. The voltammogram has two reduction steps, R₁ and R₂, and two corresponding oxidation steps, Ox₁ and Ox₂. Voltammograms were recorded using sweep rates from 0.1 to 20 V s⁻¹, and a linear relationship between the peak currents of R₁ and R₂ and the square root of the sweep rate was observed. Included in Fig. 2 is a simulated voltammogram based on the following reduction mechanism assuming reversible and diffusion-controlled conditions

\[\text{Nb}^{5+} + e^- \rightleftharpoons \text{Nb}^{4+} \] \[\text{[1]} \]

and

\[\text{Nb}^{4+} + 4e^- \rightleftharpoons \text{Nb} \] \[\text{[2]} \]

The good agreement between the measured and simulated voltammogram together with the linear dependence of the peak current on the square root of the sweep rate show that the reductions given by Eq. 1 and 2 are reversible and diffusion controlled. This mechanism is in agreement with previous work in alkali-fluoride melts²,⁴,¹⁸ and mixed alkali-chloride-fluoride melts.²¹,²²,²₆-²₈ Details concerning the simulation are previously described.⁷ The diffusion coefficient of NbF₇²⁻ can be calculated using Eq. 3

\[i_p = 0.4463nF \sqrt{\frac{nFDv}{RTc}} \] \[\text{[3]} \]

where \(n \) is the number of electrons transferred (in this case one), \(F \) is Faraday’s number, \(D \) the diffusion coefficient, \(R \) the gas constant, \(T \) absolute temperature, \(v \) the sweep rate, and \(c \) the bulk concentration of the species undergoing reduction or oxidation. Using Eq. 3 with the measured voltammograms, a diffusion coefficient of NbF₇²⁻ in FLINAK at 700°C equal to \(1.4 \times 10^{-5} \text{ cm}^2 \text{s}^{-1} \) is obtained.

Figure 3 shows a voltammogram of a FLINAK melt containing 1 mol % K₂NbF₇ saturated with Nb metal at 700°C. Sweep rate 0.2 V s⁻¹. Pt reference, working, and counter electrodes. Area of working electrode 0.044 cm².

Figure 4 shows a linear sweep voltammogram of a FLINAK melt containing 1 mol % K₂NbF₇ saturated with Nb metal at 700°C. Sweep rate 0.005 V s⁻¹. Pt reference, working, and counter electrodes. Area of working electrode 0.044 cm². Included in the figure is a curve based on the equation \(E = E^0 + \frac{RT}{nF} \ln\left(\frac{i}{i_{\text{lim}}} - 1\right) \) where all the symbols have their usual meaning. The curve was fitted using \(E^0 = 0.625 \text{ V} \) and \(i_{\text{lim}} = 0.461 \text{ A cm}^{-2} \). (---) Measured and (---) simulated.
Voltammograms recorded at such low scan rates are usually very close to the steady-state situation where one can assume linear diffusion gradients within the Nernst layer. Under such conditions, limiting current values can be measured at sufficiently high overpotentials. One oxidation step is observed in Fig. 4, and a simulated curve based on an oxidation reaction involving transfer of one electron is included in the figure. Since the measured and simulated curves compare well, it is reasonable to conclude that Nb(IV)-fluoro complexes are the main species in the FLINAK melt at 700°C after reduction of Nb(V) with Nb metal. The reduction of Nb(V) by Nb metal therefore follows the reaction

$$4\text{Nb}^5+ + \text{Nb} \rightarrow 5\text{Nb}^{4+} \quad \text{[4]}$$

Spontaneous reduction of Nb(V).—Figure 5 shows a voltammogram recorded at 5 mV s⁻¹ of a FLINAK melt to which 1 mol % K₂NbF₇ was added. The voltammogram was recorded 23.75 h after addition of K₂NbF₇. The voltammogram shows two limiting current levels, one anodic at positive potentials and one cathodic at negative potentials. The anodic and cathodic limiting currents are plotted as functions of the time after addition of K₂NbF₇ in Fig. 6. Since the limiting current is directly proportional to the bulk concentration of the species undergoing reduction or oxidation, Fig. 6 shows that there is a spontaneous reduction of Nb(V) to Nb(IV) without addition of Nb metal. The cathodic limiting current represents the reduction of Nb(V) to Nb(IV), and the anodic limiting current the oxidation of Nb(IV) to Nb(V). Shortly after addition of K₂NbF₇, only a very low limiting current of the oxidation of Nb(IV) to Nb(V) is observed compared to the limiting current of the reduction of Nb(V) to Nb(IV). Consequently, there is practically no Nb(IV) in the melt compared to the amount of Nb(V). As the time after addition increases, however, the limiting current of the oxidation of Nb(IV) increases while the limiting current of the reduction of Nb(IV) decreases. After about 100 h, almost all of the Nb(IV) initially added is reduced to Nb(IV). Included in Fig. 6 are two fitted curves based on first-order reaction-rate expressions

$$\frac{di_{\text{lim}}}{dt} = \frac{FD_{\text{Nb}(IV)} \delta}{\delta} \frac{dc_{\text{Nb}(IV)}}{dt} = -\frac{FD_{\text{Nb}(IV)} \delta}{\delta} k c_{\text{Nb}(IV)} \quad \text{[5]}$$

where \(t\) is time, \(D\) is the diffusion coefficient of Nb(V), \(\delta\) is the thickness of the Nernst diffusion layer, \(k\) is the rate constant, and \(c_{\text{Nb}(IV)}\) the bulk concentration of Nb(V). For Nb(IV) the first-order rate expression becomes

$$\frac{di_{\text{lim}}}{dt} = \frac{FD_{\text{Nb}(IV)} \delta}{\delta} \frac{dc_{\text{Nb}(IV)}}{dt} = -\frac{FD_{\text{Nb}(IV)} \delta}{\delta} k c_{\text{Nb}(IV)} \quad \text{[6]}$$

where \(c_{\text{Nb}(IV)}^0\) is the initial concentration of Nb(V).

Second-order rate expressions were also tested, but the first-order expressions (Eq. 5 and 6) gave much better fits to the data.

Figure 6 also shows that the limiting currents for reduction of Nb(V) and oxidation of Nb(IV) are almost the same at similar concentrations, indicating that the diffusion coefficient of the Nb(IV)-fluoride is about the same as that of NbF₇⁻.

Oxide oxidation measurements at glassy carbon electrodes.—Polyakova et al.³ have shown that a glassy carbon electrode can be used to detect tantalum-oxofluoride complexes quantitatively in FLINAK melts. Haarberg et al.²⁰ used the same method to determine the amount of CaO dissolved in a CaCl₂ melt. The oxides in the oxocomplexes are oxidized at positive potentials, and the peak currents of sweep voltammograms can be used to measure the concentration of oxide species in the melt. Our experiments show that this is also possible for niobium-oxofluoro complexes. Figure 7 shows staircase voltammograms recorded at a glassy carbon electrode. Staircase voltammetry was found to give slightly more reproducible measurements than regular linear-sweep voltammetry or square-wave voltammetry. The melt was FLINAK with 1 mol % K₂NbF₇ and excess Nb metal to which Na₂O was added gradually. The figure shows that the voltammograms are rather noisy, making it difficult to determine precisely the peak currents. Therefore, instead of using the peak current as a measure, the area below the voltammograms has been used. Since the potential axis also is a time axis, this area is the integral of the current and, consequently, a measure of the charge transferred through the cell during recording of the voltammogram. The areas below voltammograms as a function of the amount of oxide added to three different melts are given in Fig. 8. The three melts contained FLINAK with 1 mol % K₂NbF₇ and excess Nb metal, 0.5 mol % Nb₂O₅, and 0.3 mol % KNbO₃ before oxide additions. The plot in Fig. 8 is discussed later.

The molar ratio between oxide and niobium is expressed in the following as \(n_{\text{O}}/n_{\text{Nb}}^0\). The amount of Na₂O added is used as the basis for \(n_{\text{O}}^0\), while the sum of the niobium added as K₂NbF₇ and the amount of Nb metal dissolved according to Eq. 4 before addition of oxide defines the value of \(n_{\text{Nb}}^0\).
The solubilities of Nb\(_2\)O\(_5\) and KNbO\(_3\) were measured by adding the salts stepwise to FLIN AK melts and after equilibration to record oxide voltammograms at a glassy carbon electrode. The solubility limit is reached when additional salt does not lead to increasing currents for the voltammograms. Figures 9 and 10 give the area below the voltammograms as a function of the amount of salt added. They show that the nominal solubilities of Nb\(_2\)O\(_5\) and KNbO\(_3\) are 1.8 and 0.13 mol %, respectively. Mathiesen \textit{et al.} \cite{17} using chemical analysis of melt samples extracted from a FLIN AK melt at 700°C, found the same solubilities.

\textit{Nb(IV)-oxofluoride complexes in FLIN AK.---}Figure 11 shows a cyclic voltammogram of a FLINAK melt to which 1 mol % K\(_2\)NbF\(_7\), excess Nb metal, and 0.9 mol % Na\(_2\)O were added. As previously reported, \cite{2,4,22} no reduction peak except for the deposition peak is observed. There is, however, a reduction shoulder less than 100 mV positive of the reduction peak which is discussed in the following.

Linear-sweep voltammograms (LSVs) were recorded positively from the rest potential at a sweep rate of 5 mV s\(^{-1}\). An example of such a voltammogram is given in Fig. 12. The FLINAK melt contained 1 mol % K\(_2\)NbF\(_7\), excess Nb metal, and 0.46 mol % Na\(_2\)O. Two limiting-current levels are observed, one at ca. 0.4 V and the other at ca. 1.1 V. When no oxide is added to the melt, only the level at more positive potentials is present. This is the limiting current for the oxidation of Nb(IV)-fluoride complexes to NbF\(_7^2^-\). At oxide to niobium ratios above 0.8, however, only the level at more negative potentials is present in the voltammograms. A plot of the two limiting currents as functions of the oxide to niobium ratio is given in Fig. 13. The limiting current of the oxidation of Nb(IV)-fluoride complexes is given in Fig. 14 as a function of the oxide to niobium ratio.
The reason the reduction/oxidation of the Nb(IV)oxofluoro complexes is observed only as a shoulder in the cyclic voltammogram in Fig. 11 is that the potential for the reduction

\[
\text{NbOF}^{(y-2)-} + e^- \rightarrow \text{NbOF}^{(y+2a-4)-} + (5-y)\text{F}^- + (1-a)\text{O}^{2-} \quad [8]
\]

This implies that both the \(\text{NbOF}^{(y-2)-}\) and \(\text{NbO}_2\text{F}_y^-\) complexes form in the melt, in agreement with the data of Matthisen et al.\(^{17}\)

The reaction

\[
\text{NbOF}^{(y-2)-} \rightarrow \text{NbOF}^{(y+2a-4)-} + (5-y)\text{F}^- + (1-a)\text{O}^{2-}
\]

is close to the deposition potential. The shoulder in Fig. 11 is not present in melts without oxide. Due to the overlap of the reduction in Eq. 8 and the deposition reaction, characterization of the reduction with respect to reversibility, the number of electrons transferred, or diffusion coefficients has been impossible.

Figure 14 shows LSVs recorded at a Pt electrode. The melts were FLINAK with additions of \(K_2\text{NbF}_7 + Na_2O\) (\(n_{Na}/n_{Nb} = 2\)), \(K_2\text{NbF}_7 + \text{Nb metal} + Na_2O\) (\(n_{Na}/n_{Nb} = 1.6\)), and \(\text{Nb}_2O_5\). The voltammograms are quite similar, indicating that the same species is being reduced in all three melts. There are two reduction steps, one at \(-0.4\text{ V}\) and a second at \(-0.85\text{ V}\). The first step is a deposition step. Matthisen et al.\(^4\) performed potentialiostatic electrolysis at the potential of the first reduction step, but the deposit did not adhere to the Pt electrode. Thus, identification of the material that deposits in the first reduction step is difficult. Voltammograms recorded shortly after each other gave reproducible peak currents for the first reduction step, while those of the second step changed considerably. It is therefore possible that the second step is not due to reduction of a species dissolved in the melt; it may as well be caused by further reduction of the material deposited in the first step.

Figure 11. Cyclic voltammogram of a FLINAK melt containing 1 mol % \(K_2\text{NbF}_7\), excess Nb metal, and 0.9 mol % \(Na_2O\) at 700°C. Sweep rate 0.2 V s\(^{-1}\). Pt reference, working, and counter electrodes. Area of working electrode 0.044 cm\(^2\).

Figure 12. LSV recorded at 5 mV s\(^{-1}\) of a FLINAK melt containing 1 mol % \(K_2\text{NbF}_7\), excess Nb metal, and 0.46 mol % \(Na_2O\). Temperature 700°C. The figure shows two limiting-current levels, one at about 0.3 V and a second at about 1 V.

Figure 13. Limiting currents for the two limiting current levels observed in Fig. 12 as functions of \(n_{Na}/n_{Nb}\) in the melt. The melt was FLINAK containing 1 mol % \(K_2\text{NbF}_7\), excess Nb metal, and varying amounts of \(Na_2O\). Temperature 700°C. (○) Limiting currents of the oxidation at about 1 V in Fig. 12 and (■) limiting currents of the oxidation at about 0.3 V in Fig. 12.
metal deposition peak and an oxidation/reduction, Ox$_2$/R$_2$, about 1.5 V above the reduction step. The current of both redox couples increased with increasing amounts of Na$_2$O added. The origins of these peaks were studied in a separate experiment. Na$_2$O was added to a FLINAK melt without niobium to study the electrochemical behavior of the noncomplexed O$_2^-$ ion. Voltammograms of these melts showed the redox couple Ox$_2$/R$_2$, but not the more negative couple R$_1$/Ox$_1$. The current for the oxidation peak Ox$_1$ increased linearly with the concentration of Na$_2$O. 0.22 mol % K$_2$NbF$_7$ was added to the melt, giving an n_{Na}/n_{Nb} value of 5.6, and then the redox couple R$_1$/Ox$_1$ appeared. It is therefore reasonable to assume that the reduction/oxidation close to the alkali metal deposition, R$_1$/Ox$_1$, is due to niobium species, and that the oxidation/reduction Ox$_2$/R$_2$ is due to noncomplexed or weakly bonded O$_2^-$. An oxidation reaction on platinum due to O$_2^-$ ions was also observed by Inman and Weaver10 using a LiCl-KCl eutectic melt with additions of Li$_2$O. The shapes of the reduction peak R$_1$ and the corresponding oxidation peak Ox$_1$ indicate that the reduction/oxidation involves only soluble species, since the characteristic shapes of deposition/stripping peaks are absent. Moreover, the large value of the ratio between the current of the reduction peak and the corresponding current of the oxidation peak indicates that reduction R$_1$ is partly irreversible. This irreversibility decreased with increasing sweep rates, but was present even at sweep rates as high as 20 V s$^{-1}$. The peak current of the reduction step R$_1$ was measured using square wave voltammetry, and the peak currents are plotted vs. n_{Na}/n_{Nb} in Fig. 16. The figure shows that the peak currents increase linearly with the amount of Na$_2$O added until $n_{Na}/n_{Nb} = 6$. Further additions of oxide did not cause increasing peak currents. The leveling out of the peak current at n_{Na}/n_{Nb} values close to six was also found when Na$_2$O was added to melts containing Nb$_2$O$_5$ or K$_2$NbF$_7$ and Nb metal. The presence of dissolved niobium species in FLINAK melts with $n_{Na}/n_{Nb} = 3$ is discussed later.

Equilibrium, sampling, and analysis of O$_2^-$/Nb(V) in FLINAK with varying n$_{Na}$/n$_{Nb}$ ratios.—The influence of Na$_2$O on K$_2$NbF$_7$ containing FLINAK melts was studied as a function of n_{Na}/n_{Nb} molar ratios at 700°C. The oxide and niobium contents in both the melt and in the solid phases are included in this ratio, which is therefore equal to the total amount of both Na$_2$O and K$_2$NbF$_7$ added. The oxide and Nb(V) concentrations in the melt are plotted vs. the n_{Na}/n_{Nb} ratio in Fig. 17. From the following observations, it is possible to give an evaluation of the stoichiometry of the precipitating species as well as an idea of the complexes formed.

Figure 14. LSVs of FLINAK melts with additions of (---) 1 mol % K$_2$NbF$_7$ and 2 mol % Na$_2$O ($n_{Na}/n_{Nb} = 2$), (-----) 1 mol % Nb$_2$O$_5$, (----) 1 mol % K$_2$NbF$_7$, excess Nb metal, and 2 mol % Na$_2$O ($n_{Na}/n_{Nb} = 1.6$). Pt working, reference, and counter electrodes, area of working electrode 0.044 cm2; Temperature 700°C. Sweep rate 0.5 V s$^{-1}$.

Figure 15. Cyclic voltammogram of a FLINAK melt containing 0.30 mol % KNbO$_3$ and 1.6 mol % Na$_2$O, $n_{Na}/n_{Nb} = 7.4$. Platinum working electrode, area 0.044 cm2. Sweep rate: 0.5 V s$^{-1}$; Temperature 700°C.

Figure 16. Peak currents of square-wave voltammograms recorded at a platinum electrode (area 0.044 cm2) plotted vs. n_{Na}/n_{Nb}. The reduction studied is R$_1$ in Fig. 15. The melt was FLINAK containing 0.3 mol % KNbO$_3$ and varying amounts of Na$_2$O. Temperature 700°C. Parameters for the square-wave voltammograms: step length 5 mV, amplitude 20 mV, frequency 200 Hz.
$n^0_{o/nb} = 0$. — The pure fluoride melt was stable at least up to 25 h at 700°C. Samples of this melt were always white, in contrast to melts containing Nb(IV). 17

0 < $n^0_{o/nb} < 2$. — The niobium concentration in the melt was constant, and the oxygen concentration increased linearly as $n^0_{o/nb}$ increased, indicating that all added oxide went into solution. The solubility results are therefore consistent with the formation of NbOF$_3^-$ and NbOF$_2^-$ complexes, as suggested by von Barner et al. 1(y = 1 or 2)

$$\gamma O^{2-} + NbF_7^{2-} \rightarrow NbOF_2^2(2y+x−5)− + (x−7)F^− \quad [9]$$

2 < $n^0_{o/nb} < 3$. — As shown in Fig. 17, the concentrations of both oxygen and niobium decrease as the ratio $n^0_{o/nb}$ increases and reach a solubility minimum at $n^0_{o/nb} = 3$. Precipitation of a solid compound, probably AlkNbO$_3$, as indicated by Eq. 10, seems to occur, in agreement with Matthiesen et al. 17 and the volumetric studies

$$NbOF_4^{3-} + O^{2-} + Alk^+ \rightarrow AlkNbO_3(s) + 4F^− \quad [10]$$

In this case, the relative slopes of the lines showing the decreasing Nb(IV) and O2 concentrations in the melt should be close to −1 and −2, respectively. The data presented in Fig. 17 show slightly negative slopes, and this is discussed elsewhere. 18 The measured solubility seems to be caused by the presence of a species like NbOF$_3^−$. 18

3 < $n^0_{o/nb} < 4.6$. — Dissolution of AlkNbO$_3(s)$ occurs. The concentrations of both oxygen and niobium increases up to the ratio $n^0_{o/nb} = 4$. The experimental data indicated that all solids are dissolved at this point. Matthiesen et al. 17 proposed the formation of NbOF$_2^{2y+x−5}$ complexes, probably with $\gamma = 4$. When the ratio $n^0_{o/nb}$ exceeds 4, the niobium concentration remains constant while the oxygen composition in the melt increases. The increase, however, is less than what would be expected if all the added oxide dissolves completely, indicating the possible formation of another solid compound.

Based on the present data only, it is not possible to give a final conclusion on the Nb(IV)-O-F complexes formed in the concentration region 0 < $n^0_{o/nb} < 4.6$. Recently, Vik et al. 18 showed by Raman spectroscopy that a melt consisting of K$_2$NbF$_7$ in FLINAK with varying Na$_2$O concentrations up to $n^0_{o/nb} = 8$ probably contained several Nb(IV)-O-F complexes with various stoichiometry depending on the O/Nb molar ratio.

![Figure 17. Na$_2$O and Nb(IV) concentrations in the liquid LiF-NaF-KF eutectic at 700°C vs. the molar ratio of the total amount of oxide and niobium in the melt and in the solid phases. $n^0_{o/nb}$ (C) Oxide analysis with standard deviation and (■) Nb analysis, standard deviations less than size of squares.](image)

Discussion

Spontaneous reduction of Nb(V)-fluorides.—The reduction of Nb(V)-fluorides has also been observed by Alimova et al. 32 and by Stöhr. 10 Stöhr also observed spontaneous reduction of Nb(V) in FLINAK but found that longer times were required for complete conversion of Nb(V) to Nb(IV) than observed in our electrochemical study. Alimova et al. 32 found that Nb(V) was reduced to Nb(IV) when K$_2$NbF$_7$ was added to an alkali chloride melt. It is, however, rather surprising that Nb(V)-fluorides are reduced spontaneously in FLINAK. Reduction of Nb(V) to Nb(IV) requires oxidation of other species. Positively scanned voltammograms of melts containing Nb(V)-fluorides show no oxidation other than oxidation of the platinum working electrode close to 1 V above the reduction of Nb(V) to Nb(IV). Similar scans at a glassy carbon electrode show only oxidation of the very small amount of oxide impurities in the melt taking place about 1.5 V positive of the reduction of Nb(V) to Nb(IV). Moreover, neither the platinum electrodes nor the glassy carbon crucible showed any signs of corrosion after finishing the experiments. It is therefore unlikely that platinum or glassy carbon is oxidized during reduction of Nb(V)-fluorides. Reduction of Nb(V) to Nb(IV) has also been observed in alkali chloride melts. 13 However, in such melts, the reduction of Nb(V) to Nb(IV) takes place at potentials only slightly below the oxidation of chloride to chlorine, and the reaction

$$Nb(V) + Cl^− \rightarrow Nb(IV) + \frac{1}{2}Cl_2(g) \quad [11]$$

is expected to take place. Chlorine evolution has been observed when Nb(V) chlorides have been added to alkali chloride melts. A similar reaction in FLINAK melts involving oxidation of fluoride to fluorine is not expected. The oxidation potential of fluorides compared to fluorine is considerably higher than the oxidation of chloride to chlorine, and the reduction of Nb(V)-fluorides compared to Nb(V) chlorides is much more negative. Consequently, one should expect that ΔG for the reaction

$$Nb(V) + F^− \rightarrow Nb(IV) + \frac{1}{2}F_2(g) \quad [12]$$

is too positive for the reaction to occur. Nevertheless, Alimova et al. 32 report that fluoride is oxidized when K$_2$NbF$_7$ is added to an alkali chloride melt. Analysis of the melt after spontaneous reduction of Nb(V) to Nb(IV) showed that the amount of fluoride ions in the melt had decreased. They also present other quite convincing results indicating that Eq. 12 occurred. One should also bear in mind that Eq. 12 is thermodynamically possible if the fluorine pressure is sufficiently low, which is the case if the fluoride that escapes the melt reacts with, e.g., the iron materials in the cold zones inside the furnace. Equation 12 is also in agreement with the first-order reaction mechanism observed in the present work.

It should be noted that these results disagree with the observations made during the present solubility experiments. After K$_2$NbF$_7$ had been added to the melt, it was left to equilibrate for about 24 h before the first sample was withdrawn and Na$_2$O was added. According to Fig. 6, about 50% of the Nb(V)F$_7^{2-}$ originally present should be reduced to Nb(IV)F$_{4x−4y}$ $^{−4y}$. From similar solubility experiments with Nb(IV), 17 it is known that samples of melts with Nb(IV)fluoride complexes have a distinct blue color, but this color was never observed in any of the samples withdrawn from the melt in the present solubility experiment. The reaction mechanism of Reaction 12 seems to vary from one investigation to another. One speculates that the rate may, e.g., depend on the ability of the materials used in the cell to react with fluorine escaping from the melt, or on the catalytic effect of small impurities in the melt.

The spontaneous reduction of Nb(V) to Nb(IV) does not occur for the NbOF$_2^{2−}$ complex. An explanation for this can be found by considering the voltammogram in Fig. 12. The figure shows that the reduction of NbF$_7^{2−}$ takes place about 0.8 V above the reduction of NbOF$_2^{2−}$ to the Nb(IV)-oxofluorocomplex. The reaction
will therefore be strongly shifted to the right \((\Delta G = -nF\Delta E = -77 \text{ kJ})\). This indicates that oxide stabilizes niobium in the oxidation state five.

Oxide oxidation measurements at the glassy carbon electrode.—A further discussion of the data in Fig. 8 is required. Polyakov et al.\(^3\) measured the oxide oxidation peak currents of LSVs at a glassy carbon electrode. When they added Na\(_2\)O to a FLINAK melt containing K\(_2\)TaF\(_7\), they found that the peak currents increased linearly with the amount of Na\(_2\)O added until \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 2\), then decreased linearly until \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 3\), and then increased again when Na\(_2\)O was added beyond \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 3\). The increasing currents measured for \(n_{\text{O}_2}^{\text{Na}_2\text{O}} \geq 3\) were explained simply by assuming that the added Na\(_2\)O dissolved and dissociated in the melt. The O\(^{2-}\) ions were oxidized at the glassy carbon electrode, resulting in higher currents. This, however, is not correct, as shown by Vik et al.\(^35\) When Na\(_2\)O is added beyond \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 3\), KTaO\(_3\), which precipitated when \(2 < n_{\text{O}_2}^{\text{Na}_2\text{O}} < 3\), dissolved in the same way as for the present system (Fig. 17). The plot in Fig. 8 apparently shows a somewhat different behavior. The amount of oxide in the melt, supposedly represented by the area below voltammograms such as those in Fig. 7, does not seem to increase with the first additions of Na\(_2\)O to the melt. There is a plateau for \(n_{\text{O}_2}^{\text{Na}_2\text{O}}\) values between 0 and 0.8, then there is a linear increase between 0.8 and 1.6, a decrease between 1.6 and 2.4, and finally a steady increase for higher \(n_{\text{O}_2}^{\text{Na}_2\text{O}}\) values. The experiment was made three times, and the same results were obtained each time.

Both the plateau and the nonintegral values at the transitions in Fig. 8 require further discussion. Starting with the plateau, Fig. 18 shows chronoamperograms recorded at various potentials at the glassy carbon electrode. A normal diffusion-controlled oxidation would give increasing currents with increasing overpotentials until the limiting-current level is reached. The chronoamperograms in Fig. 18 deviate from this behavior in that they show increasing currents until a certain overpotential, but increasing the potential above that value leads to decreasing currents. This is illustrated more clearly in Fig. 19 where the current measured 0.1 and 15 s after applying the potential is plotted vs. the potential applied. The shapes of the curves resemble the staircase voltammograms in Fig. 7, there being an increase of the current to a certain potential value, and then a sudden decrease. Such behavior indicates that the electrode passivates, i.e., that the oxidation of oxide is hindered above a certain potential value. Passivation of graphite electrodes was also observed by Reddy et al.,\(^35\) who studied the oxidation of oxide at a graphite anode in a Li\(_2\)O-LiF-CaF\(_2\) melt at 1093 K. They report that the passivation is due to adsorption of CO on the electrode surface.

The plateau for \(0 < n_{\text{O}_2}^{\text{Na}_2\text{O}} < 0.8\) in Fig. 8 can therefore be caused by a passivation of the glassy carbon electrode above a certain potential. Assuming that the oxide in Na\(_2\)V-monoxo-fluoro complex is so strongly bonded that the oxidation takes place mainly at potentials in the passive region of the glassy carbon electrode, only a minor part of the total oxide would be detected. However, oxide bonded to a Nb-dioxo-fluoro complex would probably be more weakly bonded and would consequently be oxidized at sufficiently negative potentials to be in the nonpassive potential region of the electrode. This would lead to considerably higher currents during the oxidation of the dioxo complex. The formation of a Nb-dioxo-fluoro complex can therefore explain the sharp increase at \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 0.8\) in Fig. 8. A transition at \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 0.8\) is also seen in Fig. 13, where the oxidation current of the Na\(_2\)V-fluoro to Nb(V)-fluoro complex reaches zero and the oxidation current of the Na\(_2\)V-monoxo-fluoro to the Nb(V)-monoxo-fluoro complex is at its maximum. The falling oxidation currents of the Na\(_2\)V-monoxo-fluoro complex above \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 0.8\), together with the increase in the oxide oxidation currents seen in Fig. 8, indicate the formation of a new species. This species is probably a Nb-dioxo-fluoro complex.

A straightforward explanation for the \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 0.8\) value at this transition has not been found. Efforts were made to study melts with \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 0.8\) in the presence of excess Nb metal by Raman and infrared (IR) spectroscopy of the melt, but the experiments were unsuccessful. The melt was too strongly colored to allow recording of Raman spectra. To record IR spectra, a cell with a diamond window was to be used, but preliminary tests showed that a thin, shiny black layer, possibly niobium carbide, formed on diamond when it was in contact with the melt, making it unsuitable for IR spectroscopy.

The nonintegral values of the transitions at \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 1.6\) and 2.4 also need discussion. Figure 14 shows that voltammograms of melts containing \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 2\) and \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 1.6\) were similar. Moreover, only very low anodic currents were measured at potentials above the deposition peak, indicating that Nb in the dissolved Nb species was present in its most oxidized form, i.e., as Nb(V). Stölhr\(^10\) also found, when studying a FLINAK melt with excess Nb metal, that the anodic limiting current of the Nb(IV)-monoxo-fluoro complex reached zero at \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 1.6\). Consequently, at \(n_{\text{O}_2}^{\text{Na}_2\text{O}} = 1.6\), even in the presence of Nb metal, it is reasonable to assume that Nb(V)-dioxo-fluoro complexes, probably NbO\(_2\)F\(_2\), are the predominant dissolved Nb species. The following reaction is therefore

\[
\text{Nb}(V)+2\text{F}^- + \text{Nb}(IV)\text{OF}_4^{(3-)} = \text{Nb}(V)\text{OF}_4^{(5-)} + \text{Nb}(IV)\text{OF}_4^{(3-)} + (y-x)\text{F}^- \tag{13}
\]

\[
\text{Nb}(IV)\text{OF}_4^{(3-)} + (y-x)\text{F}^- \tag{13}
\]
suggested to take place when oxide is added to a melt with Nb(IV)-monoxo-fluoro complexes

\[5\text{Nb(IV)-monoxo-fluoride} + O^{2-} \rightarrow 4\text{NbO}_2F_4^{2-} + \text{Nb(s)} \] [14]

Due to the precipitation of Nb metal according to Eq. 14, the concentration of dissolved niobium in the melt decreases. When Eq. 14 is completely shifted to the right, the concentration of dissolved niobium species, \(n_{\text{Nb}_{\text{sol}}} \), is less than \(n_{\text{Nb}_{\text{sp}}} \) by a factor of 4/5. Thus, \(n_{\text{Nb}_{\text{sol}}}/n_{\text{NB}_{\text{sp}}} = 5/4n_{\text{Nb}_{\text{sol}}}/n_{\text{Nb}_{\text{sp}}} \). Multiplying the \(n_{\text{Nb}_{\text{sol}}}/n_{\text{Nb}_{\text{sp}}} \) values 1.6 and 2.4 by 5/4, 2 and 3 are obtained, respectively. Figure 20 shows the same data as in Fig. 8 plotted vs. \(n_{\text{Nb}_{\text{sol}}}/n_{\text{Nb}_{\text{sp}}} \), i.e., the molar fraction between oxide and niobium in the melt corrected for precipitation of Nb according to Eq. 14. Since no metal precipitation occurs in melts where Nb,\(O_2 \), or \(\text{KNO}_3 \) was used as the niobium source [only Nb(V) added], \(n_{\text{Nb}_{\text{sol}}}/n_{\text{NB}_{\text{sp}}} = n_{\text{Nb}_{\text{sol}}}/n_{\text{Nb}_{\text{sp}}} \) in these melts. The corrected plot shows a maximum at \(n_{\text{Nb}_{\text{sol}}}/n_{\text{Nb}_{\text{sp}}} = 2 \) and a minimum at 3. It also shows that the areas below the oxide oxidation voltammograms of melts with \(\text{NbO}_2 \) and \(\text{KNO}_3 \) compare well with those obtained from melts with excess Nb metal, supporting the assumption that Nb complexes with more than one oxide per niobium are stable only when Nb is in oxidation state five.

Matthiesen et al.17 also reported a decrease in the niobium concentration when \(\text{Na}_2\text{O} \) was added to a Nb(IV) containing FLINAK melt at \(n_{\text{Nb}_{\text{sol}}}/n_{\text{Nb}_{\text{sp}}} > 1 \). However, they also observed that some of the oxide added above \(n_{\text{Nb}_{\text{sol}}}/n_{\text{Nb}_{\text{sp}}} > 1 \) did not go into solution. Two independent series of experiments were performed, and the slopes of the lines describing the changes in the Nb(IV) and O\(^2-\) compositions with additions of \(\text{Na}_2\text{O} \) indicate precipitation of a niobium oxide compound above \(n_{\text{Nb}_{\text{sol}}}/n_{\text{Nb}_{\text{sp}}} = 1 \). These solubility results are in contrast with the present voltammetric data, Fig. 8 and 20. The voltammetric data indicates that all oxide added until \(n_{\text{Nb}_{\text{sol}}}/n_{\text{Nb}_{\text{sp}}} = 1.6 \) is dissolved, while the molar analysis17 showed that some oxide precipitated. A reasonable explanation for the apparent discrepancy in the two sets of data has not been found.

Niobium-oxo complexes in FLINAK melts with \(n_{\text{O}/n_{\text{Nb}}}; \leq 3 \).—Polyakov et al.3 assumed that noncomplexed O\(^2-\) ions caused the increasing currents measured during oxide oxidation for \(n_{\text{O}/n_{\text{Nb}}}; \geq 3 \). In view of the present results, those of Matthiesen et al.17 and Vik et al.,34 this is not the case, neither for the niobium system nor the tantalum system. Using the peak current of the O\(_2\) oxidation shown in Fig. 15, it is possible to detect O\(^2-\) concentrations at least as low as 0.05 mol %. Traces of noncomplexed O\(^2-\) ions were not detected below \(n_{\text{O}/n_{\text{Nb}}}; = 4 \) (using the corrected \(n_{\text{Nb}_{\text{sp}}} \)). Figure 20 shows, however, that the oxide oxidation currents increase from \(n_{\text{O}/n_{\text{Nb}}}; = 3 \). Since noncomplexed oxide is not present in the range 3

\(< n_{\text{O}/n_{\text{Nb}}}; < 4 \), it is reasonable to assume that the rise in the oxide oxidation currents is due to niobium-oxo complexes. This means that solid KNO\(_3\) dissolves when \(\text{Na}_2\text{O} \) is added to the melt. However, for \(3 < n_{\text{O}/n_{\text{Nb}}}; < 3.8 \), voltammograms recorded at the platinum electrode do not show any reductions of significance between the alkalii metal reduction and the platinum oxidation. The soluble product of the reaction between AlKNO\(_3\)(s) and \(\text{Na}_2\text{O} \) in FLINAK therefore seems to be a niobium-oxo complex that is electroinactive except for the oxide oxidation at glassy carbon. At \(n_{\text{O}/n_{\text{Nb}}}; > 3.8 \), a reduction step due to niobium species, \(R_1 \) in Fig. 15, appears.

We have not been able to give clear-cut explanations for all the reported observation, since some suggestions are given. Andonov et al.21 have studied molten LiNbO\(_3\) by neutron scattering. They found that niobium oxide clusters with niobium octahedrally coordinated by oxygen were present in the melt. These octahedra typically shared corners, forming quite ordered clusters. Moreover, Raman spectroscopic measurements of FLINAK melts containing 2.7 mol % \(\% \text{K}_2\text{NbF}_7 \) and relatively much \(\text{Na}_2\text{O} \) showed Raman bands which were assigned to NbO\(_4\) octahedrals sharing corners or edges.1 It is therefore possible that clusters similar to those observed by Andonov et al.21 also exist in FLINAK melts. At \(n_{\text{O}/n_{\text{Nb}}}; > 3.8 \), \(R_1 \) in Fig. 15 starts to appear, and at slightly higher \(n_{\text{O}/n_{\text{Nb}}}; \) values, oxidation of weakly bonded and noncomplexed O\(^2-\) ions (O\(_2\) in Fig. 15) becomes significant. This indicates that new Nb species form as \(n_{\text{O}/n_{\text{Nb}}}; \) increase above 3.8, in agreement with Raman spectroscopic measurements18 that indicate the presence of two Nb species at \(n_{\text{O}/n_{\text{Nb}}}; > 4 \). These new species show both oxide oxidation at the glassy carbon electrode and reduction at the Pt electrode. Moreover, they exist in equilibrium with relatively large concentrations of noncomplexing O\(^2-\) ions. Figure 16 shows that the peak current for \(R_1 \) stops to increase at \(n_{\text{O}/n_{\text{Nb}}}; \) values close to six, indicating that Nb-oxo complexes with an oxide to niobium ratio, \(n_{\text{O}/n_{\text{Nb}}}; = 6 \), equal to six is stable in the melt. Thus, it is possible that the species first formed when \(\text{Na}_2\text{O} \) is added to a melt with KNO\(_3\) react with subsequently added oxide to form niobium-oxo complexes with \(n_{\text{O}/n_{\text{Nb}}}; = 6 \). The reduction at \(R_1 \) in Fig. 15 may thus be due to such complexes. Since \(R_1 \) does not show completely reversible behavior, simple voltammetric analysis of this peak does not give precise results. However, the reversibility condition29

\[\frac{E_p - E_{1/2}}{nF} = \frac{RT}{nF} \] [15]
can give a rough estimate of the number of electrons transferred at \(R_1 \). Using relatively high sweep rates (1-10 V s\(^{-1}\)), \(n \) values around 0.8 were obtained. Possibility one Nb(V) ion is reduced to Nb(IV) for each species reduced, indicating that the Nb-oxo complex with \(n_{\text{O}/n_{\text{Nb}}}; = 6 \) is monomeric.

Conclusion

The equilibria suggested to be valid for niobium complexes in a FLINAK melt containing excess Nb metal deduced from the electrochemical measurements are summarized as follows. With no oxide added to the melt only Nb(IV)\(^{[2-4]}\) ions are present. When \(n_{\text{O}/n_{\text{Nb}}}; < 0.8 \), Nb(IV)\(^{[2-4]}\) and Nb(IV)O\(_2\)\(^{[2-2]}\) coexist in the melt. At 0.8 < \(n_{\text{O}/n_{\text{Nb}}}; < 2 \), some inconsistency between the present voltammetric data and the solubility data of Matthiesen et al.17 is apparent. The solubility data17 indicate that Nb(IV)O\(_2\)\(^{[2-2]}\), Nb(IV)OF\(_2\)\(^{[2-2]}\), and a solid niobium-oxo-compound are formed. The present voltammetric data, however, indicate that only Nb(IV) is stable at these high oxide concentrations, and that an equilibrium of the type 5Nb(IV)-monoxo-fluoride + oxide = 4NbO\(_2\)F\(_4\)\(^{-}\) + Nb(s) shifted heavily to the right is established. At 2 < \(n_{\text{O}/n_{\text{Nb}}}; < 3 \), NbO\(_2\)F\(_4\)\(^{-}\) reacts with O\(^2-\) and KNO\(_3\)(s) is formed. NbO\(_4\) dissolves according to the reaction NbO\(_4\) + 4F\(^-\) + K\(^+\) = NbO\(_2\)F\(_4\)\(^{-}\) + KNO\(_3\)(s), in agreement with the data of Matthiesen et al.17 At higher oxide to niobium ratios, KNO\(_3\)(s) dissolves, and Nb(V)-O-F complexes with higher O/Nb ratios are formed. This is also shown by Raman spectroscopy.18 The stability of Nb(V) in FLINAK in the absence of oxide seems to depend on the experimental setup. Some
investigations show that Nb(V) is slowly and spontaneously reduced to Nb(IV), while others show no reduction. We have not been able to resolve this apparent discrepancy.

Acknowledgments
C.R. stayed at The Technical University of Denmark financed through an individual fellowship contract from the Human Capital and Mobility Project of the European Union.

The Norsk Hydro Research Center assisted in meeting the publication costs of this article.

References