Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko; Smets, Barth F.

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Microbial Community Stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

Carles Pellicer-Nàcher1*, Maël Ruscalleda1†, Akihiko Terada1, Barth F. Smets1†

Both authors have contributed equally to the completion of this work

1 Department of Environmental Engineering, Technical University of Denmark; 2 Laboratori d’Enginyeria Química i Ambiental (LEQUIA), Universitat de Girona, Spain. *E-mail: {capn, maels, akt, bfs}@env.dtu.dk

1. Introduction

Anaerobic Ammonium Oxidizers (Anamox): A relatively new paradigm in Nitrogen removal from wastewater

But why using two reactors when one is enough? -> Biofilms

Advantages
• Compact configuration.
• Lower N₂O production (NO₂⁻ is produced and consumed in-situ).

Disadvantages
• Need of a carrier material.
• Difficulty of control (thickness, O₂ supply, microbial selection...).

3. Performance

Through sequential aeration regimes and L_O₂/L_NH₄⁺ tuning to 1.73 the reactor performance increased considerably since Anammox inoculation

• Observed removal rates up to 0.77 g-N/L/day (5.5 g-N/m²/day, 70% of the N-load). The Anammox process is expected to remove most of it.
• NOB produces 30% of the total NO₃⁻.

5. Microscopic observation & quantification - Conclusions

• Results proved the possibility of engineering biofilm structures for autotrophic nitrogen removal taking advantage of DO gradients inside the biofilm
• AOB grew mainly in aerobic regions, close to the membrane in the biofilm core. Communities developed in areas with high cell densities and tended to grow in radial structures with streptobacilli shape
• AnAOB grew in the perimeter of the biofilm structure, where anaerobic conditions prevailed. Since nitrite was produced in-situ by AOB, AnAOB grew in clusters pointing the internal part of the biofilm
• NOB developed mainly during the reactor start-up, before Anammox inoculation, and were mainly located in the transient zone of the biofilm, together with other non-identified bacteria (most likely heterotrophic).
• Image quantification using DAIME showed that AOB were the most abundant population while AnAOB only covered 20% of the biofilm area.

4. Materials and methods

Fluorescent In-Situ Hybridization was performed after reactor shutdown (day 470, 0.7 g-N/L/day) to study the microbial community in the reactors

Complete section (x10) of a fibre targeted for EUB, AOB and AnAOB, with details of the internal part (A) and the external part (B) of the biofilm.

View of a section targeted for AOB, NOB and EUB and the respective details of the internal (A) and the external (B) parts, with the same magnifications used before. Mem: Membrane; Bulk: Bulk liquid. The results of quantification are expressed in percentage respect to the general probe area obtained in the complete section pictures.