Dual-polarization, wideband microstrip antenna array for airborne C-band SAR

Granholm, Johan; Skou, Niels

Published in: Proceedings of Phased Array Systems and Technology

Link to article, DOI: 10.1109/PAST.2000.858949

Publication date: 2000

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
DUAL-POLARIZATION, WIDEBAND MICROSTRIP ANTENNA ARRAY FOR AIRBORNE C-BAND SAR

Johan Granholm & Niels Skou

Danish Center for Remote Sensing, Department of Electromagnetic Systems, Technical University of Denmark, Building 348, DK-2800 Lyngby, Denmark (jg@emi.dtu.dk, ns@emi.dtu.dk)

Abstract

The paper describes the development of a C-band, dual-linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance of the basic stacked patch element, operating from 4.9 GHz to 5.7 GHz, and a 2x2 element test-array of these, are described.

Introduction

High-resolution airborne and spaceborne imaging of the Earth is often carried out using remote sensing techniques, such as SAR. Early SAR systems were single-polarization instruments, but time has seen a growing interest in dual-polarization (i.e. “polarimetric”) SAR systems. The reason for this trend is the additional amount of geophysical information, which it is possible to extract from polarimetric SAR data, compared to single-polarization data. It is well known, that radar signatures of e.g. crops are polarization dependent. An intuitive physical explanation of this dependence is, that the vertical polarization primarily are reflected by the vertical structures (e.g. straws, trunks), whereas the horizontal polarization are in stead reflected by the predominantly horizontal structures (e.g. branches). Mapping an area with polarimetric SAR thus provides more information, hence allows more details to be distinguished and increases the ability to classify targets. Future SAR systems for e.g. crop study and monitoring are therefore required to be polarimetric instruments. Several space agencies and other institutions are currently developing such next-generation polarimetric SAR systems, [1] - [4].

Resolution requirements for future SAR systems

Several polarimetric SAR systems have already been built and flown, incl. the Danish L- and C-band system, EMISAR, developed at Department of Electromagnetic Systems, Technical University of Denmark (EMI), [5]. The EMISAR system has a resolution of approx. 2 m in both range and elevation. At the time of design (1993) this was state-of-the-art, but not least due to the rapidly advancing digital technology (especially high-speed data acquisition and storage systems), higher resolutions are possible today. At the same time, user demands, e.g. for surveying applications, continue to call for increased resolution. Both for scientific and commercial mapping purposes, there is a desire to achieve resolution of 0.25 x 0.25 m.

The maximum SAR azimuth resolution is not dependent on the bandwidth of the transmitted radar chirp, but on the pulse-repetition frequency and to a first approximation to the physical antenna length, L. The SAR azimuth-resolution, \(\Delta R_{\text{az}} \), is limited to:

\[\Delta R_{\text{az}} = \frac{L}{2} \]

This (frequency independent) result shows, that to obtain an azimuth resolution of 0.25 m the antenna should be of max. 0.5 m long. Lower frequency results in less gain with this limited antenna length. High-resolution SAR systems therefore are difficult at lower microwave frequencies.

The maximum range-resolution in SAR systems, \(\Delta R_{\text{r}} \), and the bandwidth requirement are inversely proportional:

\[\Delta R_{\text{r}} = \frac{c}{2B_{\text{R}}} \]

where \(B_{\text{R}} \) is the bandwidth of the transmitted pulse and c is the speed of light. The present EMISAR system has 100 MHz bandwidth in both L-band and C-band, translating to approx. 2 m resolution in range, including proper weighting. To obtain 0.25 m resolution in range, the pulsed chirp must therefore have an eightfold increase in bandwidth, compared to the range resolution of both the L-band SAR (with centre frequency 1.25 GHz) and the C-band SAR (centered at 5.3 GHz) is desired to be increased in the next-generation EMISAR system, technology will not allow for this in L-band. In C-band, however, it may be possible to achieve up to 800 MHz bandwidth. The goal therefore is to upgrade the, today medium resolution, C-band EMISAR to a high-resolution system, capable of 800 MHz operation. To be compatible with existing and planned civilian and scientific air- and spaceborne SARS’s (to allow for data comparison), the centre frequency shall remain 5.3 GHz.

Requirements for polarimetric SAR antenna arrays

Future polarimetric SAR-systems require compact and lightweight dual-linear polarization antenna arrays, which should preferably be flat to facilitate easy installation; e.g. conformal on the fuselage of aircrafts. The arrays’ elevation plane radiation patterns shall be shaped to resemble a modified cosecant-squared shape (to compensate for the range-dependence), while the azimuth plane radiation patterns shall be narrow, with a moderately low sidelobe level, and symmetrical w.r.t. boresight. In order to obtain a high degree of polarization discrimination of the overall SAR system, it is a further requirement to the array, that it should have a low cross-polarization level. An antenna element, which complies with these requirements, is the microstrip patch. Although it is very narrowbanded as a single-layer structure, a stacked patch can be added to significantly increase the bandwidth.

Aperture coupled microstrip patches, although capable of offering wide bandwidth, has the drawback that, in a practical antenna, a closed cavity is required to be placed behind the aperture. Such cavities may lead to a reduction of the bandwidth of the “naked" element but, worst-case, the aperture will take up valuable board space underneath the aperture. Due to this “real-estate" problem, this cavity may prevent, or at least severely complicate, the (already challenging) design and layout of the necessary beamforming network (BFN), which must reside under the groundplane, below the aperture. Furthermore, apertures are known to excite surface waves far stronger, than probe-fed patches. For these reasons aperture-coupled patches is not the optimum choice in this application. Probe-fed patches are attractive from the a feeding network point of view, since the probes does not take up any board space, and easily connect the patch to its beamforming network, which is e.g. located several layers down from the patch groundplane. For this reasons probe-fed patches are chosen.

The existing C-band EMISAR system [6], operating over an approx. 2 % bandwidth, uses a single, probe-fed patch. The L-band EMISAR system [7], which is also operating over a 100 MHz bandwidth (translating to 8 %), uses a stacked probe-fed patch. The idea thus was to investigate, if the stacked patch concept could be adopted and optimized to operate over an 800 MHz bandwidth in C-band.

Selection of dielectric substrate

The bandwidth of microstrip patches depends strongly on the substrate thickness and -permittivity. For practical reasons, C-band patch probes shall be fabricated as “integrated via’s". Although electrical attractive, this mechanical requirement preclude the use of low loss, low permittivity foam materials, since via’s cannot be neither grown, nor supported, by such soft materials. Hence, for bandwidth reasons, it is desirably to use a thick, low
The wide bandwidth requirement will demand that the permittivity of the substrate be high. On the other hand, the maximum bandwidth will demand that the thickness of the substrate be limited for several reasons: A thick substrate may support the (undesirable) propagation of excessive surface waves, and will also be heavy. Furthermore, it will necessarily imply a long feeding probe, which electrically acts as a large series-inductance, thus reducing the element bandwidth.

Due to fabrication and reliability issues, the multi-layer stripline BFN and the radiating patch layer should preferably be fabricated using the same type of substrate. The wide bandwidth requirement will demand that the elements must be fed through a binary-type network in the elevation direction. In the elevation direction, it is desired to have the antenna pattern so that it will resemble a modified cosecant-squared pattern. This elevation BFN will be implemented using couplers and lines. It is desirable to be able to vary the characteristic impedance of the striplines over a wide range (w.r.t. 50 Ω), within acceptable linewidths (e.g. 5 mm to 0.5 mm) to facilitate the design of these couplers, lines and necessary impedance matching networks. This requirement also calls for the use of a low permittivity substrate, although its thickness can be chosen independently of the patch substrate thickness. The design of the BFN, however, is a separate task, and will not be covered in this paper.

In this work, 32 mil (0.8128 mm) Rogers RO4003 substrate was initially chosen for the driven patch, having a dielectric constant ε=3.38 and a loss tangent tanδ=0.0027 @ 10 GHz. The RO4003 material is constructed as woven glass cloth, impregnated with a ceramic loaded thermoset plastic resin to yield a thermally stable rigid laminate with electrical properties suitable for microwave frequencies. Although the RO4003 permittivity and dielectric loss factor is somewhat higher than PTFE-based materials (e.g. Rogers RT/duriod 5870 having ε=2.22 and tanδ=0.0009 @ 10 GHz), RO4003 is attractive in an antenna feasibility study like the present, since RO4003 resembles FR4 in mechanical integrity and can be fabricated like basic FR4 material (and also because of its much lower price). Hence prototype development of stripline PCB's with integrated vias is much faster and cheaper if using RO4003 materials, than if using a PTFE-based material.

Design of the C-band wideband element

The starting point in the design of a stacked patch, is the design of the driven (i.e. single-layer) patch, shown in Fig. 1. It is designed so that its resonance frequency is in the centre of the band, i.e. 5.3 GHz.

![Fig. 1. Dual polarization probe-fed microstrip single patch; a) Top view of the patch, b) cross section.](image)

The patch is fed close to its edges using 0.6 mm diameter probes (in the laboratory patch, the probe is directly made from the center conductor of a SMA-connector). Two probes (designated “H” and “V”), located on the patch center lines, are used to excite the patch in orthogonal modes. This orthogonality will have the effect, that the coupling between the H and V-ports (i.e. the scattering parameter S_{21}) remains fairly low in the vicinity of the patch resonance frequencies ("resonance frequency" is defined as the frequency at which the real part of the patch’s input impedance achieves its maximum value, when the reference plane is at the upper side of the ground plane). The measured input impedance of the driven patch alone is shown in Fig. 2.

![Fig. 2. Measured S-parameters and input impedance of single-layer C-band microstrip patch.](image)

There is only one resonance in the band shown (approx. at 5.3 GHz). The impedance for the two ports is identical. An interesting experimental observation is, that the resonance frequency occurs at the same frequency where the two ports are best de-coupled (i.e. at the frequency where the scattering parameter S_{21} exhibits its minimum). At this frequency it can therefore be expected, that the cross-polarization level of the patch will be best, because S_{21} is minimum. When designing the patch for cross-polarization purposes, it is important to obtain a low level of the element S_{21}, since the “cross-coupled” power will directly affect the cross-polarization level.

The impedance match of the single-layer patch to 50 Ω (i.e. the scattering parameter S_{11}) is quite poor, but this is a direct consequence of the patch being fed at the edge. Here the input impedance is on the order of 300 Ω. If a single-layer patch is desired to have a good intrinsic match to a lower impedance level (e.g. 50 Ω), this can easily be accomplished simply by moving the feed points towards the patch center.

The measured radiation pattern of the single-layer probe-fed microstrip patch is shown in Fig. 3. All pattern measurements presented in this paper have been performed in the spherical near-field test facility of EMI,[8]
The driven patch is identical to the one shown in Fig. 1. The upper patch acts as a passive parasitic element. Although the impedance of the single (i.e. unstacked) driven patch, when fed on its edge, is very high (see Fig. 2), it is significantly reduced when being loaded by the stacked patch. Hence, to obtain an approx. 50 Ohm input impedance of the stacked patch, the driven patch is fed on the edges. The dual linear polarization requirement implies, that the stacked microstrip patch must be constructed symmetrically. A pair of quadratic and co-aligned patches is therefore used.

The sizes of and the distance between the two patches were varied, until the desired wideband behaviour for the stacked patch is obtained, an iterative numerical design process, using an electromagnetic simulator, was adopted. The sizes of and the distance between the two patches were varied, until the desired wideband performance was obtained. During this process it was found, that a good starting point was to design the driven patch first, having its resonance frequency lying in the centre of the band of interest. The stacked patch adds a second resonance, and the task is now to find the parameters so that the two resonances balance in value (i.e. are excited equally strong), and are spaced in frequency so that the impedance remains constant over the band.

Using this "numerical iterative design", combined with impedance measurements to validate the approach, a stacked C-band microstrip patch yielding an optimum result was found, when the size of the quadratic lower and upper patches were 14.5 mm and 19.5 mm, respectively. The upper patch is etched on a 0.1 mm FR4 substrate, and mounted inverted to let the FR4 material act as environmental protection. The spacing between the patches is 4.5 mm, using a Rohacell 31 HF foam material having ε of 1.05. All layers are glued together, using a 0.1 mm thick adhesive film (supplied by 3M; type 665). The measured scattering parameters for this element are shown in Fig. 5.

A wideband behaviour for the stacked patch is indeed observed. Note, that the two "peaks" of the real-part input impedance balance quite well. Also, note how the parasitic loading of the lower patch leads to a significant decrease of the input impedance, compared to the single-layer patch. It is seen, that the intrinsic impedance of the stacked patch is not very different from 50 Ω (\(S_{11} \) of the unstacked patch remains below -10 dB in a 50 Ω system, over a 860 MHz bandwidth). This typical characteristic of the stacked patches eases the matching of the element to 50 Ω.

Rather than matching the element to 50 Ω, it should be considered to design the entire BFN using a slightly lower reference impedance (e.g. 40 Ω). This will only require one transformation from 40 Ω to 50 Ω (at the input of the array), thus saving board space and reducing the losses (since the loss in a 40 Ω system will be lower than the loss in a 50 Ω system). If reducing the system impedance to 40 Ω and implementing a simple microstrip matching network at the patch feeding point, this has been found to bring \(S_{11} \) of the patch down below -20 dB, over the 800 MHz bandwidth.

Note that the transmission through the patch (i.e. the scattering parameter \(S_{21} \)) is seen to exhibit a similar "stagger-tuned" characteristic as seen in the real-part of the input impedance. The average level of \(S_{21} \) for the stacked patch is somewhat lower than that for the single-layer patch, but from a network point-of-view this stagger-tuned behaviour is not surprising. Due to this characteristic of \(S_{21} \), it must be expected, that the cross-polarization of the stacked patch is slightly worse, than for the single-layer patch. The "stagger-tuned" behaviour of \(S_{21} \) of a stacked patch may probably be the reason why stacked patches are sometimes claimed in the literature to have a poorer cross-polarization performance, than single-layer patches. The above level of \(S_{21} \) (between −20 dB and −25 dB) is typical for wideband, probe-fed stacked microstrip patches.

The measured radiation pattern of the stacked microstrip patch is shown in Fig. 6.
To investigate wideband array-issues, four stacked patch elements were combined into a 2 x 2 element group, as shown in Fig. 7. The S-parameters of the array was measured in the case where the elements were connected to two four-way Wilkinson power splitters/combiners using coaxial cables (i.e. all elements were fed in equal amplitude and phase). The element spacing was approx. 0.7 λp.

Fig. 7. Layout of 2 x 2 element stacked microstrip array.

The measured S-parameters are shown in Fig. 8, and are compared with the calculated S-parameters in the two cases: a) Mutual coupling between the elements is neglected in the calculation, b) All mutual couplings between the elements are taken into account. In the a) case only the four eigen-impedances of the patches were connected together (in the computer) with the measured S-parameters of the four-way Wilkinson power splitters and associated cables. In the b) case, all S-parameters of the 2 x 2 element dual-polarized array (i.e. the full eight-port), all cables, and the power dividers were measured and connected.

Fig. 8. Measured S-parameters of the 2 x 2 element stacked C-band microstrip array

From Fig. 8 it is observed, that the bandwidth of the 2 x 2 element group is slightly lower than for the individual stacked element. This is due to mutual coupling between the elements, and to a lesser extent due to the finite bandwidth of the Wilkinson divider. Note that S21 of the array is practically identical to S21 for the element. Also note, that the mutual coupling certainly must be taken properly into account, otherwise measured vs. calculated data does not agree very well. The measured radiation pattern of the 2 x 2 element array is shown in Fig. 9.

Fig. 9. Radiation pattern of 2 x 2 element array of stacked microstrip patches (f = 5.3 GHz, uniform excitation).