Ammonia synthesis at low temperatures

Rod, Thomas Holm; Logadottir, Ashildur; Nørskov, Jens Kehlet

Published in:
Journal of Chemical Physics

Link to article, DOI:
10.1063/1.481103

Publication date:
2000

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
I. INTRODUCTION

The conversion of N₂ from the atmosphere into a biologically accessible form of nitrogen is a very difficult process. The formation of, e.g., NH₃ requires the N–N bond to be broken, and this bond is extremely strong, the bond energy being about 1000 kJ/mole. The process, therefore, requires either extreme temperatures, like in an arc, or the participation of an effective catalyst. Ammonia is synthesized from N₂ by two very different catalytic processes industrially. In contrast to the biological process, the industrial process requires high temperatures and pressures to proceed, and an explanation of this important difference is discussed. The possibility of a metal surface catalyzed process running at low temperatures and pressures is addressed, and DFT calculations have been carried out to evaluate its feasibility. The calculations suggest that it might be possible to catalytically produce ammonia from molecular nitrogen at low temperatures and pressures, in particular if energy is fed into the process electrochemically. © 2000 American Institute of Physics. [S0021-9606(00)70911-1]

II. THE SURFACE PROCESS

The ammonia synthesis reaction,

\[\text{N}_2 + 3\text{H}_2 = 2\text{NH}_3, \tag{1} \]
on Fe and Ru surfaces has been the subject of a large number of experimental and theoretical studies and a detailed, molecular picture of the process has been developed. The reaction proceeds via dissociation of N₂ and H₂ on the surface with subsequent hydrogenation of the adsorbed N atoms. Our density functional theory (DFT) calculations of the reaction energetics on Ru surfaces illustrate the reaction mechanism, see Fig. 1. The dissociation of N₂ is the rate limiting step in this reaction. The barrier for dissociation is rather low; experiments find a dissociation barrier close to zero on Fe surfaces, and as low as 40 kJ/mole on stepped Ru. Both values are consistent with the temperature dependence of the synthesis rate measured on an industrial catalyst. They are also in excellent agreement with reaction barriers calculated using DFT. The high temperatures and pressures are, therefore, not needed for N₂ dissociation to take place. H₂ dissociation is even more facile. The problem in the surface process is that the bonding of the N and H atoms to the metal surfaces is so strong (cf. Fig. 1) that high temperatures are needed to have enough clean, reactive surface available for dissociation and reaction. The high temperature has the side effect that the equilibrium in Eq. (1) is shifted to the left. This is not desirable, since no catalyst can produce more ammonia than the equilibrium amount. The high pressures are chosen to alleviate this problem, since that shifts the equilibrium back towards the products again.

A low temperature process based on N₂ and H₂ dissociation on the catalyst surface would, therefore, require a surface which does not bind the N and H atoms too strongly while keeping the barrier for N₂ dissociation low. Ru may be a slightly better catalyst than Fe because it does that to some extent, but a really good, low temperature catalyst based on the reaction Eq. (1) may be hard to find because the N-surface bond strength and the barrier for N₂ dissociation tends to be strongly coupled so that a weaker N-surface bond also results in a higher dissociation barrier.

III. THE ENZYME PROCESS

The enzyme nitrogenase represents an alternative catalyst for the ammonia synthesis. The active part in the enzyme is believed to be the FeMo cofactor (FeMoco) which has the stoichiometric formula MoFe₇S₉ (homo-citrate). The overall process can be written
where the obligatory simultaneous H\textsubscript{2} evolution has been left out. The electrons are provided by reduced ferredoxin. Large amounts of energy is used in the process, both in the form of a high chemical potential of the electrons and in the form of hydrolysis of at least 16 molecules adenosinetriphosphate (ATP) per turn over of Eq. (2).

\[
\text{N}_2 + 6e^- + 6H^+ = 2\text{NH}_3,
\]

where the obligatory simultaneous H\textsubscript{2} evolution has been left out. The electrons are provided by reduced ferredoxin. Large amounts of energy is used in the process, both in the form of a high chemical potential of the electrons and in the form of hydrolysis of at least 16 molecules adenosinetriphosphate (ATP) per turn over of Eq. (2).

The active site of the enzyme is very well characterized, but the detailed molecular mechanism is not as well established as for the metal surface process. It is generally believed that the biological process does not involve initial breaking of the N–N bond, and recent DFT calculations on different Mo, Fe sulfide complexes modeling the FeMoco support this picture. These are the same type of calculations, describing in detail the experimentally very well characterized surface process. It is, therefore, likely that the approach can be used to describe the enzyme process as well. Here the main approximation is that only a small fraction of the enzyme can be included. DFT calculations using a MoFe\textsubscript{6}S\textsubscript{9} complex to model the FeMoco suggest that N\textsubscript{2} is adsorbed on the FeMoco without dissociating, and when electrons and protons are added to the N\textsubscript{2} molecule one by one, first one and then the second NH\textsubscript{3} molecule (or NH\textsubscript{4}+ ion) leaves the catalytic site. Figure 2 compares the energetics of adding H atoms (from H\textsubscript{2}) to an N\textsubscript{2} molecule in the gas phase and adsorbed on the MoFe\textsubscript{6}S\textsubscript{9} complex. The effect of the MoFe\textsubscript{6}S\textsubscript{9} complex is very significant, in particular in stabilizing the least stable NNH intermediate by 110 kJ/mole.

The calculated energetics, Fig. 2, suggests that if the hydrogen entering the process comes directly from H\textsubscript{2}, the model enzyme still has a sizeable “barrier” associated with the NNH intermediate. In the biological process H\textsubscript{2} is not the...
source of hydrogen atoms, and the energy of the (‘+H’ = \(\text{H}^+ + e^- \)) entering Eq. (2) is different from that of hydrogen in \(\text{H}_2 \). It may be\(^{36}\) that the reaction is able to proceed at room temperature because the enzyme feeds hydrogen with a higher chemical potential than in \(\text{H}_2 \) into the reaction in the form of electrons with a high electrochemical potential and/or through the hydrolysis of ATP.\(^{37,39}\) If this is the case, it might be possible to produce ammonia by electrolysis of the isolated FeMoco. So far no one has been able to do that, but a first step in this direction has been taken by Pickett et al.\(^{25}\) who have reported that for large enough negative bias, \(\text{H}_2 \) can be produced, showing that the chemical potential of (\(\text{H}^+ + e^- \)) in the active site of the enzyme can be raised electrochemically above that of hydrogen in \(\text{H}_2 \).

Shilov et al.\(^{40}\) have catalytically reduced acetylene by means of the FeMoco and various amalgams as reductants. In this connection it is also relevant to note that there has been several reports on the protolysis of \(\text{N}_2 \) containing transition metal complexes under strongly reducing conditions.\(^{41,43}\)

The possibility that we will discuss in the following is whether a process like the one shown in Fig. 2 is possible directly on a metal surface in particular if extra energy is fed into the reaction electrochemically. We are using the DFT calculations to study the question whether the FeMoco model system we consider is unique in letting the process in Fig. 2 go so relatively easily, or whether a similarly facile process is possible at a metal surface. If that is the case, it might be possible to form \(\text{NH}_3 \) at a metal surface, by using it as the cathode in a proton containing electrolyte in the presence of molecular nitrogen.

IV. CALCULATIONAL DETAILS

The DFT calculations behind the results in Figs. 1 and 2 and the further results to follow are based on a plane-wave expansion of the wave functions, a GGA description of exchange and correlation effects,\(^{44,45}\) and ultra soft pseudopotentials\(^{46}\) except for \(\text{S} \) where a nonlocal soft pseudopotential\(^{47}\) is used. Plane waves with kinetic energies up to 25 Ry are used. The self-consistent electron density is determined by iterative diagonalization of the Kohn–Sham Hamiltonian, Fermi-population of the Kohn–Sham states (\(k_B T = 0.1 \text{ eV} \)), and Pulay mixing of the resulting electronic density.\(^{48}\) All total energies have been extrapolated to \(k_B T = 0 \text{ eV} \).

In the DFT calculations, the MoFe\(_6\)S\(_9\) complex is repeated periodically in one direction to give all Fe and Mo atoms the same coordination number as in the real FeMoco. In the other two directions the system is also repeated periodically but with vacuum in between to avoid interaction effects. A complete structural relaxation to the lowest energy state is performed for each configuration studied. It turns out that the model MoFe\(_6\)S\(_9\) complex has bond lengths and angles closely resembling those found experimentally for the FeMoco.\(^{27–32}\) For further details of the calculations on the model of the active part of the enzyme, see Ref. 36. The only difference is that in the present paper the obtained densities are used as input for a total energy calculations using the slightly more accurate RPBE functional to describe exchange correlation effects.\(^{45}\)

The metal surface chosen to study the question of a molecular \(\text{N}_2 \) hydrogenation process is the Ru(0001) surface modeled by a periodic array of two layer slabs separated by the equivalent of five layers of vacuum. An unit cell giving (2 × 2) periodicity along the surface is used and the corresponding Brillouin zone is sampled by 18 special \(k \)-points. The two layer slab gives results for \(\text{N} \) and \(\text{N}_2 \) adsorption that are within 0.2 eV of the results using 3–6 layers. The remaining computational details are exactly as for the model enzyme.\(^{36}\) The adsorbed species were allowed to fully relax, but the substrate atoms were kept fixed at their ideal bulk positions.

V. GENTLE \(\text{N}_2 \) HYDROGENATION

In Fig. 3 we investigate the possibility of hydrogenating \(\text{N}_2 \) directly when it is adsorbed on the Ru(0001) surface. As for the MoFe\(_6\)S\(_9\) complex the calculations for the surface have been performed by first adsorbing \(\text{N}_2 \) and then adding

![Image](330x428 to 546x740)
H atoms one by one. Each time a new H atom is added several bindings sites on N2 have been tried in order to find the most stable intermediate. In Fig. 3 we include the structures of the most stable intermediates.

It is clear from Fig. 3 that the most stable intermediates on the Ru surface are very similar to those found for the model enzyme. In both cases the first hydrogenation step is endothermic. After that the reaction proceeds exothermically until the first ammonia splits off after addition of the fifth hydrogen, Fig. 3(g). Addition of the sixth hydrogen forms adsorbed ammonia Fig. 3(h), which desors endothermically, Fig. 3(i).

In agreement with other evidence 49,50 our calculations indicate that the transfer of protons to the adsorbed N2 is not associated with significant energy barriers. If we assume this to be the case, the rate limiting step is associated with reaching the state Fig. 2(c) or Fig. 3(c). The small adsorption energy, $E(b)$, gives rise to a low coverage of N_2 at the temperatures and pressures of interest here (300 K and 1 atm). It is simple to show that due to the low coverage, the rate for the total reaction depends only on $E(c)$ and not on $E(c) = E(b)$. 51 The overall activation energy for the total reaction is, therefore, equal to $E(c)$. We find $E(c) = 80 \text{kJ/mole}$ for the MoFe$_{6}$S$_{9}$ complex and $E(c) = 90 \text{kJ/mole}$ for Ru(0001). As discussed above, when the hydrogen atoms are added in the form of electrons and protons, the barrier may be decreased by changing the electrochemical potential of the electrons.

The calculations do not have an accuracy to predict accurately activation energies, but they strongly indicate that for a sufficiently negative bias the metal surface should in principle allow ammonia production at room temperature and atmospheric pressure. There are of course a number of potential problems in achieving this, the most serious of which may be the competition of the ammonia synthesis with hydrogen evolution. The same is seen in the enzyme process where H_2 production also competes with NH$_3$ formation. On the Ru surface the problem is worse because H atoms bind stronger than N_2 to the surface, while the opposite is true at the active site of the MoFe$_{6}$S$_{9}$ complex, where H bound to Fe is unstable relative to H on S or H$_2$(g). 52 Perhaps steps which bind N$_2$ significantly stronger than terraces and does not bind H atoms quite as strongly can act as active sites for this reaction. This may, however, introduce N$_2$ dissociation which would immediately destroy the reactive sites. Alternatively, the Ru surface or other metal surfaces may have to be poisoned by, e.g., sulfur adsorption which both prevents H adsorption and N$_2$ dissociation. 53 In fact, one may view the FeMoco as a Fe cluster passivated by S. In this connection it may be important that the cluster can distort to accommodate the N$_2$, see Fig. 2(a) and 2(b), as pointed out by Somorjai and Borodko. 54 Yet another possibility is to use a noble metal or a surface alloy adsorbing H atoms less strongly.

Apart from a negative bias, the requirement for a low temperature ammonia synthesis reaction from N$_2$ is that protons are readily available. This may be accomplished in solution, or by using a proton conductor as the electrolyte. It cannot be excluded that the enzyme has a structure that facilitates the proton transfer particularly well, and that it is difficult to obtain equally good conditions at a metal surface. On the other hand, it is known that even the isolated cofactor can produce H$_2$, 25 can protonate acetylene, 40 and binds CO in much the same way as in the enzyme. 26

Recently it has been reported that ammonia was produced electrochemically by a Pd catalyst on a proton conducting oxide. 55 We suggest that this might have happened by the mechanism discussed here. We note that a reasonably low temperature reaction using H$_2$ as the H source might even be possible at the surface if N$_2$ dissociation and H poisoning can be avoided.

VI. SUMMARY

In summary, we have calculated the most stable intermediates along a reaction path where adsorbed N$_2$ on Ru(0001) is hydrogenated, and compared the results with the corresponding reaction mechanism previously published for the enzyme nitrogenase. The comparison shows many similarities between the mechanism on these two catalysts. In particular, we find that both reaction mechanism may proceed at low temperature if hydrogen is fed into the reaction in the form of electrons and protons with a higher chemical potential than hydrogen in the form of H$_2$.

ACKNOWLEDGMENTS

The present work was in part financed by The Danish Research Councils through Grant No. 9501775. The Center for Atomic-scale Materials Physics (CAMP) is sponsored by the Danish National Research Foundation.

Ammonia synthesis at low temperatures

32. The rate at low ammonia pressures is given by \(r = 2k \theta_{N_2} \), where the rate constant, \(k \), for \(b \rightarrow c \) is proportional to \(\exp(-E(c) - E(b)/k_BT) \). \(\theta_{N_2} \) is the degree of \(N_2 \) coverage, given by a Langmuir isotherm. For low coverage the Langmuir isotherm gives that \(\theta_{N_2} \) is proportional to \(\exp(-E(b)/k_BT) \). We find, therefore, that \(r \) is proportional to \(\exp(-E(c)/k_BT) \) for low coverage.