Molybdenum(VI) Oxosulfato Complexes in MoO₃–K₂S₂O₇–K₂SO₄ Molten Mixtures: Stoichiometry, Vibrational Properties, and Molecular Structures

Kalampounias, Angelos G.; Tsilomelekis, George; Berg, Rolf W.; Boghosian, Soghomon

Published in:

Link to article, DOI:
10.1021/jp306701k

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Molybdenum(VI) Oxosulfato Complexes in MoO$_3$–K$_2$S$_2$O$_7$–K$_2$SO$_4$ Molten Mixtures: Stoichiometry, Vibrational Properties, and Molecular Structures

Angelos G. Kalampounias,† George Tsilomelekis,† Rolf W. Berg,‡ and Soghomon Boghosian,*†

†Department of Chemical Engineering, University of Patras and Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), GR-26500 Patras, Greece

‡Chemistry Department, The Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

ABSTRACT: The structural and vibrational properties of molybdenum(VI) oxosulfato complexes formed in MoO$_3$–K$_2$S$_2$O$_7$ and MoO$_3$–K$_2$S$_2$O$_7$–K$_2$SO$_4$ molten mixtures under an O$_2$ atmosphere and static equilibrium conditions were studied by Raman spectroscopy at temperatures of 400–640 °C. The corresponding composition effects were explored in the X_{MoO_3} range. MoO$_3$ undergoes a dissolution reaction in molten K$_2$S$_2$O$_7$, and the Raman spectra point to the formation of molybdenum(VI) oxosulfato complexes. The Mo–O stretching region of the Raman spectrum provides sound evidence for the occurrence of a dioxo Mo(=O)$_2$ configuration as a core. The stoichiometry of the dissolution reaction MoO$_3$ + nS$_2$O$_7^{2−}$ → C$^{2n−}$ was inferred by exploiting the Raman band intensities, and it was found that $n = 1$. Therefore, depending on the MoO$_3$ content, monomeric [MoO$_2$(SO$_4$)$_2$]$^{2−}$ and/or associated [MoO$_2$(SO$_4$)$_2$]$^{2m−}$ complexes are formed in the binary MoO$_3$–K$_2$S$_2$O$_7$ molten system, and pertinent structural models are proposed in full consistency with the Raman data. A 6-fold coordination around Mo is inferred. Adjacent MoO$_2^{2+}$ cores are linked by bidentate bridging sulfates. With increasing temperature at concentrated melts (i.e., high X_{MoO_3}), the observed spectral changes can be explained by partial dissociation of [MoO$_2$(SO$_4$)$_2$]$^{2m−}$ by detachment of S$_2$O$_7^{2−}$ and formation of a Mo—O—Mo bridge. Addition of K$_2$SO$_4$ in MoO$_3$–K$_2$S$_2$O$_7$ results in a “follow-up” reaction and formation of MoO$_2$(SO$_4$)$_3^{4−}$ and/or associated [MoO$_2$(SO$_4$)$_3$]$^{4m−}$ complexes in the ternary MoO$_3$–K$_2$S$_2$O$_7$–K$_2$SO$_4$ molten system. The 6-fold Mo coordination comprises two oxide ligands and four O atoms linking to coordinated sulfate groups in various environments of reduced symmetry. The most characteristic Raman bands for the molybdenum(VI) oxosulfato complexes pertain to the Mo(=O)$_2$ stretching modes: (1) at 957 (polarized) and 918 (depolarized) cm$^{-1}$ for the ν_s and ν_as Mo(=O)$_2$ modes of MoO$_2$(SO$_4$)$_2^{2−}$ and [MoO$_2$(SO$_4$)$_2$]$^{2m−}$ and (2) at 935 (polarized) and 895 (depolarized) cm$^{-1}$ for the respective modes of MoO$_2$(SO$_4$)$_3^{4−}$ and [MoO$_2$(SO$_4$)$_3$]$^{4m−}$. The results were tested and found to be in accordance with ab initio quantum chemical calculations carried out on [MoO$_2$(SO$_4$)$_3$]$^{4+}$ and [{MoO$_2$}$_2$(SO$_4$)$_4$(μ-SO$_4$)$_2$]$^{5−}$ ions, in assumed isolated gaseous free states, at the DFT/B3LYP (HF) level and with the 3-21G basis set. The calculations included determination of vibrational infrared and Raman spectra, by use of force constants in the Gaussian 03W program.

INTRODUCTION

The structure of the vanadium(V) oxosulfato complexes formed following the dissolution of V$_2$O$_5$ in molten alkali pyrosulfates, alkali sulfates, and mixtures thereof has been studied extensively because of the importance of the pertinent molten salts as constituents of the supported liquid catalytic phase of the sulfuric acid catalyst. Interestingly, a number of other transition-metal oxides have also been found to exhibit solubility in molten alkali pyrosulfate and alkali pyrosulfate/alkali sulfate mixtures, forming metal oxosulfato complexes. A procedure for inferring the stoichiometry of such solutes in molten salt solvents has been derived, based on

Received: July 6, 2012
Revised: August 14, 2012
Published: August 14, 2012

8861 dx.doi.org/10.1021/jp306701k | J. Phys. Chem. A 2012, 116, 8861−8872
Raman band intensity correlations.5 The dissolution of metal oxides at moderate or elevated temperatures (such as in molten pyrosulfate) has drawn interest from the point of view of metal ore extraction and recovery of metal oxides (e.g., catalyst active phases consisting of V\textsubscript{2}O\textsubscript{5}, WO\textsubscript{2}, NbO\textsubscript{2}, MoO\textsubscript{3}, ZnO; catalyst carriers such as TiO\textsubscript{2}, ZrO\textsubscript{2}). Thus, high-temperature Raman spectroscopy has been used for establishing the stoichiometry as well as the structural and vibrational properties of the metal oxosulfato complexes formed by dissolution of ZnO in molten K\textsubscript{2}S\textsubscript{2}O\textsubscript{7} and Na\textsubscript{2}S\textsubscript{2}O\textsubscript{7}− and of NbO\textsubscript{2} and WO\textsubscript{3} in molten K\textsubscript{2}S\textsubscript{2}O\textsubscript{7} and K\textsubscript{2}S\textsubscript{2}O\textsubscript{7}−K\textsubscript{2}SO\textsubscript{4}.6,7 In addition, by cooling the respective precursor melts under appropriate gas atmospheres, a large family of crystalline compounds has been synthesized and subjected to single-crystal X-ray analysis, thereby enabling the structural characterization of mixed oxide systems.8−11 The use of the Raman data obtained for the molten K\textsubscript{2}SO\textsubscript{4} were added to each binary mixture with K\textsubscript{2}S\textsubscript{2}O\textsubscript{7} and MoO\textsubscript{3} to establish the existence of the crystalline complexes. Fast cooling of samples with high MoO\textsubscript{3} contents by immersion in water or liquid nitrogen led to the formation of glasses.

The symbol \(X^0\) is used to denote the mole fraction of unreacted component \(i\) in the MoO\textsubscript{3}−K\textsubscript{2}S\textsubscript{2}O\textsubscript{7} binary mixture (weighed amount) before any reaction had started. The composition of the ternary mixture is defined by combining \(X_{\text{MoO}_3}\) (neglecting K\textsubscript{2}SO\textsubscript{4}) with the ratio \(Y = n(\text{SO}_4^{2−})/n(\text{Mo})\) of the number of sulfate groups added per Mo atom, which was varied between 0 and 2. After adequate equilibration at 550 °C, all binary MoO\textsubscript{3}−K\textsubscript{2}SO\textsubscript{4} mixtures with \(X_{\text{MoO}_3} = 0−0.5\) were in the liquid (molten) state at 400 °C. The dissolution of MoO\textsubscript{3} was further facilitated in ternary mixtures where sulfate was also present. Table \(1\) and Figure \(1\) summarize the compositions of the samples made during the course of the present work.

Raman Spectroscopy. The Raman furnace for the optical cells and the systematics for obtaining Raman spectra from molten salts and vapors at high temperatures have been described in detail elsewhere.2,5,3,32,33 Raman spectra were excited by the linearly polarized 532-nm line of an air-cooled diode-pumped continuous-wave laser (Excelsior series, Spectra-Physics). The laser power at the sample was set at \(\sim 100\) mW. Raman spectra were recorded in a horizontal \(90^\circ\) scattering geometry using a collecting lens system (90- and 150-mm focal lengths); the collected scattered light was passed through a notch filter to reject the Rayleigh scattering and analyzed with a Jobin-Yvon IHR-320 (ISA-Horiba group) monochromator equipped with a \(−70\) °C thermoelectrically cooled charge-coupled device detector. The notch was tilted such that bands could be detected quite close to the excitation line. The resolution of the instrument was set at \(2\) cm\(^{−1}\) for the whole set of measurements. Both polarized (VV, vertical polarization of the incident laser and vertical analysis of the scattered light) and depolarized (VH, vertical polarization of the incident laser and horizontal analysis of the scattered light) scattering

\[
\text{MoO}_3 + n\text{S}_2\text{O}_7^{2−} \rightarrow C^{2n−}
\]
Table 1. Relative Molar Compositions, \(X_{\text{MoO}_3}^0\)^{a,b} and Indicators of Incremental Sulfate Content, \(n(\text{SO}_4^{2-})/n(\text{Mo})\), of \(\text{MoO}_3-K_2\text{S}_2\text{O}_7-K_2\text{SO}_4\) Samples, along with Ordinary Mole Fractions, \(X_{\text{MoO}_3}\) and \(X_{K_2\text{SO}_4}\),

<table>
<thead>
<tr>
<th>Cell no.</th>
<th>(X_{\text{MoO}_3}^0)^{a}</th>
<th>(Y = n(\text{SO}_4^{2-})/n(\text{Mo}))</th>
<th>(X_{\text{MoO}_3})^{b}</th>
<th>(X_{K_2\text{SO}_4})^{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.102</td>
<td>0</td>
<td>0.102</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.200</td>
<td>0</td>
<td>0.200</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.249</td>
<td>0</td>
<td>0.249</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.330</td>
<td>0</td>
<td>0.330</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.402</td>
<td>0</td>
<td>0.402</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.500</td>
<td>0</td>
<td>0.500</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.201</td>
<td>0.51</td>
<td>0.182</td>
<td>0.093</td>
</tr>
<tr>
<td>9</td>
<td>0.203</td>
<td>0.99</td>
<td>0.169</td>
<td>0.167</td>
</tr>
<tr>
<td>10</td>
<td>0.203</td>
<td>1.98</td>
<td>0.145</td>
<td>0.286</td>
</tr>
<tr>
<td>11</td>
<td>0.249</td>
<td>0.51</td>
<td>0.221</td>
<td>0.112</td>
</tr>
<tr>
<td>12</td>
<td>0.250</td>
<td>1.01</td>
<td>0.199</td>
<td>0.202</td>
</tr>
<tr>
<td>13</td>
<td>0.249</td>
<td>2.01</td>
<td>0.166</td>
<td>0.333</td>
</tr>
<tr>
<td>14</td>
<td>0.329</td>
<td>0.50</td>
<td>0.283</td>
<td>0.142</td>
</tr>
<tr>
<td>15</td>
<td>0.329</td>
<td>1.01</td>
<td>0.247</td>
<td>0.214</td>
</tr>
<tr>
<td>16</td>
<td>0.330</td>
<td>2.00</td>
<td>0.199</td>
<td>0.397</td>
</tr>
<tr>
<td>17</td>
<td>0.500</td>
<td>0.51</td>
<td>0.398</td>
<td>0.202</td>
</tr>
<tr>
<td>18</td>
<td>0.497</td>
<td>1.01</td>
<td>0.332</td>
<td>0.335</td>
</tr>
<tr>
<td>19</td>
<td>0.497</td>
<td>2.01</td>
<td>0.249</td>
<td>0.500</td>
</tr>
</tbody>
</table>

\(^{a}X_{\text{MoO}_3}^0\) denotes the mol fractions of unreacted components of the \(\text{MoO}_3-K_2\text{S}_2\text{O}_7\) binary mixture (weighed amounts) before any reaction had started and any \(K_2\text{SO}_4\) had been added. \(^{b}X_{\text{MoO}_3}, X_{K_2\text{SO}_4}\) and \(X_{K_2\text{SO}_4}\) denote the ordinary mole fractions, which sum to 1 in the homogeneous melt.

RESULTS AND DISCUSSION

Raman Spectra of Binary \(\text{MoO}_3-K_2\text{S}_2\text{O}_7\) Molten Mixtures. Several cells were made, containing \(\text{MoO}_3-K_2\text{S}_2\text{O}_7\) mixtures with initial \(\text{MoO}_3\) mole fractions in the range \(X_{\text{MoO}_3}^0 = 0.0–0.5\) (for sample compositions, see Table 1, cells 1–7); sealed under an oxygen atmosphere (\(P_{\text{O}_2} = 0.2\) atm); and heated until dissolution and equilibrium were attained. Raman spectra were recorded at four different temperatures in the range of 400–640 °C. Figure 2 shows representative Raman spectra obtained for all molten \(\text{MoO}_3-K_2\text{S}_2\text{O}_7\) samples at 450 °C, together with the Raman spectra of pure molten \(K_2\text{S}_2\text{O}_7\), which are well-known\(^\text{a,36}\) and are included in Figure 2 for comparison. The most characteristic bands due to the \(\text{S}_2\text{O}_7^{2-}\) ion in molten \(K_2\text{S}_2\text{O}_7\) at 450 °C occur at 1085 cm\(^{-1}\) (terminal stretching), 730 cm\(^{-1}\) (bridging \(\text{S}–\text{O}–\text{S}\) stretching), and 318 cm\(^{-1}\) (\(\text{S}–\text{O}–\text{S}\) deformation). Upon dissolution of \(\text{MoO}_3\), several new bands emerge in the Raman spectra that can be attributed to \(\text{Mo}^{\text{VI}}\) complex formation, and their wavenumbers and polarization characteristics are compiled in Table 2. In total, 11 polarized and 5 depolarized bands are observed due to the \(\text{Mo}^{\text{VI}}\) complex formed. Notably, with increasing formal content of \(\text{MoO}_3\), the intensities of all bands ascribed to the complex(es) increase monotonically relative to the intensities of the \(\text{S}_2\text{O}_7^{2-}\) bands, thereby indicating that all of the bands arise from one type of \(\text{Mo}^{\text{VI}}\) complex. Furthermore, the bands due to the solvent \(\text{S}_2\text{O}_7^{2-}\) ion appear to diminish, indicating that the dissolution reaction takes place at the expense of \(\text{S}_2\text{O}_7^{2-}\) and results in the formation of one complex species, most likely according to eq 1 (see earlier). The bands due to the \(\text{Mo}^{\text{VI}}\) complex predominate in the Raman spectra of molten mixtures with \(X_{\text{MoO}_3}^0 \geq 0.25\). A small remainder of the main \(\text{S}_2\text{O}_7^{2-}\) band can be

"The geometries of ions in a hypothetical gaseous free state (without surrounding cations and without assuming any symmetry) were optimized, minimizing the electronic energy as a function of the geometry under tight optimization convergence criteria using the modified GDIIS algorithm. Hartree–Fock/Kohn–Sham density functional theory (DFT) procedures were used with the spin-restricted Becke’s three-parameter approximation hybrid functional (B3), the Lee–Yang–Parr correlation and exchange functions (LYP), and Pople’s polarization split-valence Gaussian basis set functions without polarization functions or diffuse orbitals (B3LYP, 3-21G). The reason for this simple choice was the lack of a better set of functions for molybdenum. For \([\text{MoO}_3(\text{SO}_4)_3]^2^+\), the DFT/B3LYP/3-21G procedure involved 408 basis functions, 756 primitive Gaussian functions, 408 Cartesian basis functions, and 206 \(\alpha\) and 206 \(\beta\) electrons. For the dimer, the calculation was about twice as complicated. The optimized results are given as sums of electronic and thermal free energies in atomic units (hartrees), not including the zero-point energy correction. The vibrational frequencies and eigenvectors for each normal mode were calculated without adjusting force constants. The spectra were calculated with a factor of 1.22 scaling of the wavenumber values, and the high temperature was modeled by assuming Gaussian band shapes of 20 cm\(^{-1}\) half-widths at band half-heights.

```
Figure 1. Ternary diagram of the mole fractions showing the compositions of the samples.
```

"The Journal of Physical Chemistry A"
seen in the Raman spectrum obtained for \(\chi_{MoO_3} = 0.5 \) sample, and the structural implications of this observation are discussed in a later section (vide infra).

The most prominent bands attributable to the MoVI complex (C\(_{2v}\)) are the 1046, 957, and 389 cm\(^{-1}\) polarized bands and the 918 cm\(^{-1}\) depolarized band, the last of which can be discerned in the VH spectrum of the \(\chi_{MoO_3} = 0.5 \) sample displayed in Figure 2. Among these bands, the 957 cm\(^{-1}\) polarized band and the 918 cm\(^{-1}\) depolarized band occur in the MoO\(_{2}\) stretching region. Interestingly, the occurrence of one polarized band and one depolarized band in the MoO\(_{==}\)O stretching region is, in principle, suggestive of a dioxo O==Mo==O configuration. A dioxo MoO\(_{2}\) (M = transition metal) unit has two stretching modes (both Raman-active), namely, a symmetric mode (\(\nu_{s} \)) and an antisymmetric mode (\(\nu_{as} \)), where the symmetric stretching mode exhibits a much higher Raman intensity and has a wavenumber that is \(10-40 \) cm\(^{-1}\) higher compared to the corresponding vibrational properties of the antisymmetric mode. Moreover, in contrast to the \(\nu_{s} \) mode, which exhibits a polarized Raman band, the \(\nu_{as} \) mode is depolarized, as expected. The wavenumbers, Raman intensities, and polarization properties of the 957 and 918 cm\(^{-1}\) bands constitute an exact match of the vibrational properties expected for a dioxo MoVI\(_{2}\)\(^{2+}\) unit and are therefore assigned as being due to the \(\nu_{s} \) and \(\nu_{as} \) Mo(O==O) stretching modes, respectively. Notably, MoO\(_{3}\) matrix-isolated molecules at 4 K exhibit the corresponding pair of \(\nu_{s}/\nu_{as} \) modes at 948/899 cm\(^{-1}\), respectively, in good agreement with the 957/918 cm\(^{-1}\) counterparts observed in Figure 2 for the MoO\(_{2}\)\(^{2+}\) core of the MoVI complex. Measured wavenumbers of MoO==O stretching vibrations, for mono-oxo and dioxo Mo model compounds of interest to the present study, are compiled in Table 3 (including references). Often, the gaseous transition-metal oxylahides are used as models for predicting the vibrational positions of oxometallic functionalities. However, such a prediction is not straightforward because the ligand field (and the coordination) around the Mo atom is expected to affect the wavenumbers of the Mo==O entities. Thus, for compounds with comparable configurations, ligands with high electronegativity (e.g., halides) create an environment around the Mo atom that tends to strengthen the Mo==O bond. This is in full conformity with the trends seen in Table 3.

Among the rest of the observed bands due to the MoVI complex, those located at wavenumbers higher than 450 cm\(^{-1}\) can be assigned to sulfate vibrational modes in environments of reduced symmetry due to coordination and/or bridging. The fundamentals for the ideal tetrahedral \(T_{d} \) sulfate conformation span the irreducible representation

\[
\Gamma_{\text{obs}} = A_{1}(\nu_{s}) + E(\nu_{as}) + 2F_{2}(\nu_{3} + \nu_{4})
\]

Group theory predicts Raman activity for all modes, whereas only the \(F_{2} \) modes are infrared-allowed; modes labeled \(\nu_{s} \) and \(\nu_{as} \) are stretchings within the approximation of weak couplings, whereas modes \(\nu_{3} \) and \(\nu_{4} \) are bendings. Moreover, the “ideal” wavenumbers for the four fundamentals are known from Raman spectra of aqueous solutions: \(\nu_{3}(A_{1}) \approx 980 \) cm\(^{-1}\), \(\nu_{4}(E) \approx 450 \) cm\(^{-1}\), \(\nu_{3}(F_{2}) \approx 1100 \) cm\(^{-1}\), and \(\nu_{4}(F_{2}) \approx 615 \) cm\(^{-1}\). However, symmetry alterations caused by coordination and bridging are expected to perturb the ideal behavior and give rise to band shifts, degeneracy lifts, and symmetry reduction of the sulfate modes. In particular, the terminal S==O stretching of a coordinated SO\(_{4}^{2-}\) moiety is expected to be blue-shifted, and

Figure 2. Raman spectra of molten MoO\(_{3}\)–K\(_{2}\)S\(_{2}\)O\(_{7}\)/O\(_{2}\) (l) and MoO\(_{3}\)–K\(_{2}\)S\(_{2}\)O\(_{7}\)–K\(_{2}\)SO\(_{4}\)/O\(_{2}\) (l) Mixtures

<table>
<thead>
<tr>
<th>MoO({3})–K({2})S({2})O({7}) (l) binary mixtures</th>
<th>MoO({3})–K({2})S({2})O({7})–K({2})SO({4})/O(_{2}) (l) ternary mixtures</th>
</tr>
</thead>
<tbody>
<tr>
<td>band location at 450 °C (cm(^{-1}))</td>
<td>tentative assignment for (\text{MoO}_2\text{SO}_3\text{O}_2\text{I}_2\text{C}(\text{l})) and (\text{MoO}_2\text{SO}_3\text{O}_2\text{I}_2\text{C}(\text{l}))</td>
</tr>
<tr>
<td>1270 (w, dp)</td>
<td>(\nu_{s}(\text{SO}_4))</td>
</tr>
<tr>
<td>1180 (m, p)</td>
<td>(\nu_{s}(\text{SO}_4))</td>
</tr>
<tr>
<td>1155 (w, dp)</td>
<td>(\nu_{s}(\text{SO}_4))</td>
</tr>
<tr>
<td>1046 (s, p)</td>
<td>(\nu_{s}(\text{SO}_4))</td>
</tr>
<tr>
<td>(\nu_{s})</td>
<td>(\nu_{s})</td>
</tr>
<tr>
<td>957 (vs, p)</td>
<td>(\nu_{s}(\text{Mo==(O)I}))</td>
</tr>
<tr>
<td>(\nu_{as})</td>
<td>(\nu_{as})</td>
</tr>
<tr>
<td>918 (s, dp)</td>
<td>(\nu_{s}(\text{Mo==(O)I}))</td>
</tr>
<tr>
<td>(\nu_{as})</td>
<td>(\nu_{as})</td>
</tr>
<tr>
<td>(\nu_{s})</td>
<td>(\nu_{s})</td>
</tr>
<tr>
<td>(\nu_{as})</td>
<td>(\nu_{as})</td>
</tr>
<tr>
<td>664 (w, p)</td>
<td>(\nu_{s}(\text{SO}_4))</td>
</tr>
<tr>
<td>622 (w, p)</td>
<td>(\nu_{s}(\text{SO}_4))</td>
</tr>
<tr>
<td>590 (w, dp)</td>
<td>(\nu_{s}(\text{SO}_4))</td>
</tr>
<tr>
<td>498 (m, p)</td>
<td>(\nu_{s}(\text{SO}_4))</td>
</tr>
<tr>
<td>389 (s, p)</td>
<td>(\nu_{s}(\text{Mo==(O)I}))</td>
</tr>
<tr>
<td>(\nu_{as})</td>
<td>(\nu_{as})</td>
</tr>
<tr>
<td>(\nu_{s})</td>
<td>(\nu_{s})</td>
</tr>
<tr>
<td>(\nu_{as})</td>
<td>(\nu_{as})</td>
</tr>
<tr>
<td>236 (s, dp)</td>
<td>(\nu_{as}(\text{Mo==(O)I}))</td>
</tr>
<tr>
<td>(\nu_{as})</td>
<td>(\nu_{as})</td>
</tr>
<tr>
<td>(\nu_{as})</td>
<td>(\nu_{as})</td>
</tr>
</tbody>
</table>

Abbreviations: s, strong; m, medium; w, weak; br, broad; v, very; sh, shoulder; p, polarized; dp, depolarized.

The Journal of Physical Chemistry A

Article

dx.doi.org/10.1021/jp306701k J. Phys. Chem. A 2012, 116, 8861–8872
therefore, the 1046 cm\(^{-1}\) polarized band can be assigned to the respective mode of a coordinated \(\text{SO}_4^{2-}\) group (see Table 2). Bands due to the \(\text{Mo}^{VI}\) complex with wavenumbers below 450 cm\(^{-1}\) are assigned either to \(\text{Mo}^{IV}\) bending or to \(\text{Mo}^{II}\) modes, respectively, of a coordinated \(\text{SO}_4^{2-}\) group (see Table 2).

Stoichiometry of the \(\text{Mo}^{VI}\) Complex in the Binary \(\text{MoO}_2\text{S}_2\text{O}_7\) System.

The above preliminary assignment of the 957 cm\(^{-1}\) polarized band and the 918 cm\(^{-1}\) depolarized band as being due to the \(\nu_s\) and \(\nu_{as}\) modes, respectively, of a dioxo \(\text{MoO}_2^{2+}\) unit and the observation of one single polarized band in the \(\text{S}^{--}\text{O}^-\) terminal stretching region (1046 cm\(^{-1}\)) is adequate for inferring that the \(\text{Mo}^{VI}\) complex formed according to eq 1 consists of \(\text{MoO}_2^{2+}\) and \(\text{SO}_4^{2-}\) units. The determination of the stoichiometry of reaction 1 from the Raman data (e.g., Figure 2) is based on the application of a procedure\(^{1,2}\) that correlates the relative Raman band intensities with the stoichiometric coefficients, \(n\). Reaction 1 is assumed to be complete (i.e., \(\text{MoO}_3\) is completely dissolved), and each equilibrium mixture is assumed to consist of the complex species formed, \(\text{C}^{2n-}\), and the remainder of the \(\text{S}_2\text{O}_7^{2-}\). The basic concept of the method originates from the theory of vibrational Raman scattering from an assembly of randomly oriented molecules, for which detailed derivations and formulas can be found in ref 45. For the purpose of the present analysis, we note that the measured integrated Raman intensity due to a vibrational fundamental \(\nu(i)\) of species \(i\), \(I_{\nu(i)}\), is directly related to the number of moles of species \(i\), \(N_i\), contained in the scattering volume according to

\[
I_{\nu(i)} = A \frac{1}{f(\nu(i), T)} N_i
\]

where \(f(\nu(i), T)\) is the Boltzmann thermal population factor

\[
f(\nu(i), T) = 1 - \exp \left[- \frac{\hbar \nu(i)}{kT} \right]
\]

which disentangles the experimentally measured Raman intensities from temperature effects. Factors including molecular scattering properties, excitation laser wavelength, and instrumental response are embodied in the parameter \(A\). For determining the stoichiometry, \(n\), we note that the intensity quotient

\[
I^0 = \frac{\{I_{\nu_{\text{S}_2\text{O}_7^{2-}}} - I_{\nu_{\text{C}^{2n-}}} - f(\nu(\text{S}_2\text{O}_7^{2-}), T)\}/N_{\text{eq, S}_2\text{O}_7^{2-}}}{\{I_{\nu_{\text{C}^{2n-}}} - f(\nu(\text{C}^{2n-}), T)\}/N_{\text{eq, C}^{2n-}}}
\]

expressing the ratio of the scattering power per ion of \(\text{S}_2\text{O}_7^{2-}\) to the scattering power per ion of \(\text{C}^{2n-}\) should be a universal constant independent of cell composition and total amounts of moles contained in the scattering volume. \(N_{\text{eq, S}_2\text{O}_7^{2-}}\) and \(N_{\text{eq, C}^{2n-}}\) are the numbers of moles of the components \(\text{S}_2\text{O}_7^{2-}\) and \(\text{C}^{2n-}\) present in each final equilibrium mixture. Now, if one assumes that eq 1 is the only stoichiometric process taking place, \(N_{\text{eq, S}_2\text{O}_7^{2-}}\) and \(N_{\text{eq, C}^{2n-}}\) can be expressed in terms of the stoichiometry as

\[
N_{\text{eq, S}_2\text{O}_7^{2-}} = N_0^{\text{S}_2\text{O}_7^{2-}} - nN_0^{\text{MoO}_3}
\]

\[
N_{\text{eq, C}^{2n-}} = N_0^{\text{MoO}_3}
\]

Therefore, it turns out that, if a correct choice of \(n\) is made, eq 3 should result in the same value of \(I^0\) using the \(N_{\text{eq, S}_2\text{O}_7^{2-}}\) and \(N_{\text{eq, C}^{2n-}}\) values computed for each initial composition together with the Raman intensity data from each corresponding cell. Although it is immaterial which particular band represents each species, it is preferable that bands due to symmetric modes that do not overlap with other bands be chosen. As a general rule, the band choice should pertain to strong, sharp, symmetric, and polarized bands.

Six binary \(\text{MoO}_3\text{S}_2\text{O}_7\) mixtures were prepared (cells 2–7 in Table 1), and the Raman spectra of the corresponding melts were recorded under static equilibrium (Figure 2). The 957 cm\(^{-1}\) band due to symmetric \(\text{Mo}^{IV}\) stretching was chosen as representative of the \(\text{Mo}^{VI}\) complex (\(\text{C}^{2n-}\)), and the 1085 cm\(^{-1}\) symmetric stretching was chosen as representative of \(\text{S}_2\text{O}_7^{2-}\). The integrated Raman intensities (peak areas) were then measured for each cell. The pertinent data are compiled in Table S1 (Supporting Information). \(I^0\) was then computed for...
four parametric choices for \(n \) (i.e., \(n = 0.5, 1, 1.5, \) and 2) for all six mixtures, as summarized in Table S2 (Supporting Information). Figure 3 shows plots of the \(I_0^{\prime} \) quotient as a function of \(X_{MoO_3}^0 \) for the four choices of \(n \). The correct value of \(n \) giving rise to a constant value for \(I_0^{\prime} \) is obviously \(n = 1 \), as illustrated by the horizontal line in Figure 3. Thus, the product formula of reaction 1 is MoS\(_2\)O\(_{10}\)\(^{2-}\). A plausible structural interpretation is that the Mo\(^{VI}\) complex contains a MoO\(_2\)\(^{2+}\) core and coordinated SO\(_4\)\(^{2-}\) ligands in accordance with the following simplest form for reaction 1

\[
\text{MoO}_3 + n\text{S}_2\text{O}_7^{2-} \rightarrow \text{MoO}_2(\text{SO}_4)_2^{2-} \quad (6)
\]

Although the results shown in Figure 3 are based on the Raman spectra obtained for the molten MoO\(_3\)–K\(_2\)S\(_2\)O\(_7\) mixtures at 450 °C, the same value for the stoichiometry (\(n = 1 \)) was found using the spectral data obtained at 400, 550, and 640 °C (results not shown). Therefore, reaction 6 must be the stoichiometric process taking place in the temperature range of 400–640 °C. However, it should be regarded only as a scheme accounting for the formation of the MoO\(_2\)(SO\(_4\))\(_2\)\(^{2-}\) unit, which should occur only as a monomer in dilute melts, whereas associated polymeric [MoO\(_2\)(SO\(_4\))\(_2\)]\(_m\)\(^{2m-}\) units and/or three-dimensional [MoO\(_2\)(SO\(_4\))\(_2\)]\(_m\)\(^{2m-}\) networks are expected to be formed for increasing \(X_{MoO_3}^0 \). In the same context, it should be noted that melts with \(X_{MoO_3}^0 \geq 0.2 \) exhibit high viscosity and glass-forming ability upon quenching.

Structural Models for MoO\(_2\)(SO\(_4\))\(_2\)\(^{2-}\) and [MoO\(_2\)(SO\(_4\))\(_2\)]\(_m\)\(^{2m-}\): Structural Alterations upon Heating.

Taking into account the fact that the Mo\(^{VI}\) complex consists of a dioxo MoO\(_2^{2+}\) core and two coordinated sulfate groups, it turns out that the simplest and most plausible structural model for MoO\(_2\)(SO\(_4\))\(_2\)\(^{2-}\) is the one shown in Figure 4A, involving hexa coordination for Mo in conformity with its coordination chemistry. The Mo atom is located in the center of a MoO\(_6\) (distorted) octahedron, of which the apical and one equatorial position are occupied by two oxide ligands forming a bent dioxo MoO\(_2^{2+}\) unit, whereas the remaining four positions of the first coordination sphere are occupied by the two bidentate chelating sulfates. One bidentate chelate sulfate group is coordinated to the equatorial plane, and the other is coordinated to the remaining axial and equatorial vertexes of the octahedron. However, it is known that transition-metal oxosulfato complexes tend to associate to each other through bridging bidentate sulfate groups, forming chainlike or networklike polymeric anionic complexes. It is evident that the extent of association of MoO\(_2\)(SO\(_4\))\(_2\)\(^{2-}\) units is favored with increasing \(X_{MoO_3}^0 \). Figure 4B shows possible alternative structural models for the [MoO\(_2\)(SO\(_4\))\(_2\)]\(_m\)\(^{2m-}\) chains and/or networks. The association between adjacent MoO\(_2^{2+}\) cores can take place either by single bidentate bridging sulfate
groups, giving rise to the formation of chains (model I in Figure 4B), or by double bidentate bridging sulfates, thereby enabling the three-dimensional growth of the polymers formed (model II in Figure 4B). As shown in Figure 4B, within structural model II, it is possible that two adjacent MoO$_2^{2+}$ cores share two bidentate bridging sulfates, thereby forming a double sulfate bridge. The types of sulfate groups participating in structural models I and II (Figure 4B) include bidentate bridging (models I and II) and bidentate chelating groups (model I) with similar local symmetries, thereby justifying the moderate splitting of the degenerate ν_3, ν_4, and ν_{as} sulfate modes observed in the Raman spectra of Figure 2.

We now focus on an interesting composition and temperature effect. From the context of the discussion on the stoichiometry of the MoVI complex, it turns out that a 1:1 MoO$_3$–K$_2$S$_2$O$_7$–K$_2$O$_2$O$_7$ (i.e., $X_{\text{MoO}_3}^0 = 0.50$) molten mixture would react stoichiometrically (mMoO$_3$ + mS$_2$O$_7^{2-}$ → [MoO$_2$(SO$_4$)$_2$]$_{2m}^{2-}$) with complete consumption of the pyrosulfate. However, as seen in the Raman spectrum obtained for the $X_{\text{MoO}_3}^0 = 0.50$ sample at 450 °C (Figure 2) the characteristic 1085 cm$^{-1}$ S$_2$O$_7^{2-}$ band persists, thereby attesting to the presence of a small amount of S$_2$O$_7^{2-}$, despite the complete consumption of MoO$_3$. An inspection (Figure 5) of the temperature dependence of Raman spectra obtained for molten MoO$_3$–K$_2$S$_2$O$_7$ mixtures with $X_{\text{MoO}_3}^0 = 0.50$ in an oxygen atmosphere ($P_{O_2} = 0.2$ atm). For spectrum recording parameters, see the caption of Figure 2.

![Figure 5. Temperature dependence of Raman spectra obtained for molten MoO$_3$–K$_2$S$_2$O$_7$ mixtures with $X_{\text{MoO}_3}^0 = 0.50$ in an oxygen atmosphere ($P_{O_2} = 0.2$ atm). For spectrum recording parameters, see the caption of Figure 2.](image)

appears at ~880 cm$^{-1}$, and its intensity increases with increasing temperature (see Figure 6 inset). The observations are interpreted to indicate that, with increasing temperature, an equilibrium shift takes place, resulting in release of S$_2$O$_7^{2-}$ together with a slight structural alteration in the coordination around Mo that tends to strengthen the Mo(=O)$_1$ bonds slightly. Now, taking into account that the ca. 880 cm$^{-1}$ broad band (Figure 6) lies in the expected region for Mo–O–Mo functionalities, a scenario accounting for all of the above observations is proposed in Figure 7, as follows. With increasing temperatures, cleavage of the double bidentate sulfate bridge takes place, resulting in detachment of a S$_2$O$_7^{2-}$ moiety and creation of a Mo–O–Mo bridge and a simultaneous “defect” in the coordination number of Mo, that is locally lowered from 6 to 5 in a pseudo-octahedral arrangement, thereby accounting for a slight strengthening of the bond order within the Mo(=O)$_2$ unit. The effect takes place exclusively in melts with $X_{\text{MoO}_3}^0 = 0.50$ equal to or slightly lower than 0.50, because an excess of S$_2$O$_7^{2-}$ (i.e., for $X_{\text{MoO}_3}^0 \leq 0.40$) would shift the scenario shown in Figure 7 to the left. Seen from a different angle, if the complete conversion had taken place in a 1:1 MoO$_3$–K$_2$S$_2$O$_7$ (i.e., $X_{\text{MoO}_3} = 0.50$) molten mixture, it would be possible for the free energy of the system to fall to an even lower value, if some of the MoVI complex formed were to dissociate according to the scheme in Figure 7, on account of the free energy of mixing of the species formed as a result of the proposed dissociation.

![Figure 6. Temperature dependence of deconvoluted polarized (VV) Raman spectra obtained for molten MoO$_3$–K$_2$S$_2$O$_7$ mixtures with $X_{\text{MoO}_3}^0 = 0.50$ in an oxygen atmosphere ($P_{O_2} = 0.2$ atm). Open circles, experimental data (only 20% of the points are shown for clarity); thick solid red line, total fit curve; thin green lines, individual modes modeled by Gaussian functions; thick blue solid line, 883 cm$^{-1}$ band.](image)
The first part of Table 2 compiles the detailed band assignments, together with the intensity and polarization characteristics in accordance with the structural model proposed for the MoO$_2$(SO$_4$)$_2$ complex.

Raman Spectra of Ternary MoO$_3$–K$_2$S$_2$O$_7$–K$_2$SO$_4$ Molten Mixtures. During the equilibration of the ternary MoO$_3$–K$_2$S$_2$O$_7$–K$_2$SO$_4$ mixtures that took place in transparent tube furnaces, it was found that K$_2$SO$_4$ could be dissolved in substantial amounts. The constituents of cells 8, 9, 11, and 12 (Table 1 and Figure 1) with X_{MoO_3} = 0.20 and 0.25 melted readily at 500 °C, resulting in yellow to dark yellow liquids, whereas heating at higher temperatures was necessary to obtain transparent dark yellow to brownish yellow molten mixtures in cells 14, 15, 17, and 18. The mixtures contained in cells 14 and 15 with X_{MoO_3} = 0.33 were molten at 550 °C, and heating to 580–600 °C was adequate for melting the contents of cells 17 and 18 with X_{MoO_3} = 0.50. A white solid excess was present in cells 10, 13, 16, and 19 despite persistent heating and torching of the samples, indicating that the particular cells contain, as explained below, excess K$_2$SO$_4$. Figures 8–10 show "titration-like" series of Raman spectra obtained for mixtures with X'_{MoO_3} = 0.25 (Figure 8), X'_{MoO_3} = 0.33 (Figure 9), and X'_{MoO_3} = 0.50 (Figure 10) as a function of the ratio of number of moles of SO$_4^{2–}$ added per Mo atom, $Y = n$(SO$_4^{2–}$)/n(Mo). All figures contain, for comparison, the Raman spectra of pure molten K$_2$S$_2$O$_7$ and molten K$_2$S$_2$O$_7$–K$_2$SO$_4$ (saturated).

A number of gradual changes (discussed below) take place in the Raman spectra of MoO$_3$–K$_2$S$_2$O$_7$ (i.e., $Y = 0$) melts upon the incremental addition/dissolution of K$_2$SO$_4$. Interestingly, the gradual changes definitively terminate for $Y = n$(SO$_4^{2–}$)/n(Mo) = 1. In particular, the following observations were made:

1. The 957/918 cm$^{-1}$ ν_{s}/ν_{as} pair due to the stretching modes of Mo(=O) is shifted to 935/895 cm$^{-1}$ on going from $Y = 0$ (i.e., no sulfate added) to $Y = 1$ (best seen in Figure 10 by comparing spectra c and e). Still, the wavenumber, intensity, and polarization characteristics of the resulting 935/895 cm$^{-1}$ pair are in full conformity with its assignment as being due to the respective ν_{s}/ν_{as} modes of a dioxo MoO$_2^{2–}$ core, which apparently is still present in the MoVI complex, although in a slightly different coordination environment that appears to weaken the Mo=O bonding.

2. The S–O terminal stretching due to the coordinated SO$_4$ groups of the [MoO$_2$(SO$_4$)$_2$]$_{m}$ complex (spectra c in Figures 8–10) gains intensity (relative to the ν_{s}/ν_{as} doublet, for example) upon K$_2$SO$_4$ addition/dissolution up to $Y = 1$ and undergoes a red shift from 1046 to 1041 cm$^{-1}$ (compare spectra e to spectra c in Figures 8–10).
This is interpreted to indicate that more sulfate groups (actually one more SO₄ per Mo) are involved in the first coordination sphere of Mo.

The 965 cm⁻¹ ν₁(SO₄²⁻) band appears in all Raman spectra of ternary mixtures with Y = 0.5 and Y = 1 (Figures 8–10), because K₂SO₄ has a finite solubility in molten K₂S₂O₇, as judged also by comparing, for example, spectra labeled a and b in Figures 8–10. Significantly, with increasing X₀ₓMoO₃, this band becomes less prominent (spectra d and e in Figure 9) and/or is hardly seen (spectra d and e in Figure 10) because of the much lower available amounts of free S₂O₇²⁻ and the subsequent lower capacity for "physically" dissolving SO₄²⁻.

(4) Excess added K₂SO₄ (i.e., Y = 1) results in precipitation of K₂SO₄ in the form of a white cloud in the bottom of the cell. The characteristic ν₁(SO₄²⁻) band at 965 cm⁻¹ is seen in spectra f of Figures 8–10, superimposed on the ν₅/ν₃ doublet.

These observations conform with a proposal according to which the Mo⁶⁺ complex formed in the ternary MoO₃−K₂S₂O₇−K₂SO₄ molten system still consists of a MoO₂²⁺ dioxo core and coordinated sulfate ligands. More specifically, the spectral evidence described above points to a reaction "following up" the 1:1 reaction taking place in the binary MoO₃−K₂S₂O₇ molten system with the involvement of one more SO₄ ligand coordinated per Mo atom in a 1:1:1 MoO₃/K₂S₂O₇/K₂SO₄ stoichiometry according to

\[
mMoO₃ + mS₂O₇²⁻ + nSO₄²⁻ \rightarrow [MoO₂(SO₄)₃]ₘn⁻ \tag{7}
\]

where the reaction is written in a generalized form to account for the formation of associated/polymeric molybdenum(VI) oxosulfato complexes. Figure 11 shows the Raman spectra obtained at 650 °C for the ternary MoO₃−K₂S₂O₇−K₂SO₄ mixtures with Y = 1 [i.e., n(SO₄²⁻)/n(Mo) = 1] obtained in an oxygen atmosphere (P₀₂ = 0.2 atm) at 650 °C with X₀ₓMoO₃, as indicated by each spectrum. X₀ₓMoO₃ denotes the formal mole fraction of MoO₃ in the binary MoO₃−K₂S₂O₇ mixture. For spectrum recording parameters, see the caption of Figure 2.

Figure 9. Titrationlike series of Raman spectra obtained under an oxygen atmosphere (P₀₂ = 0.2 atm) for molten MoO₃−K₂S₂O₇−K₂SO₄ mixtures with X₀ₓMoO₃ = 0.33 and incremental presence of K₂SO₄ (0 ≤ Y ≤ 2) and temperatures as indicated by each spectrum. X₀ₓMoO₃ denotes the formal mole fraction of MoO₃ in the binary MoO₃−K₂S₂O₇ mixture. For spectrum recording parameters, see the caption of Figure 2.

Figure 10. Titrationlike series of Raman spectra obtained under an oxygen atmosphere (P₀₂ = 0.2 atm) for molten MoO₃−K₂S₂O₇−K₂SO₄ mixtures with X₀ₓMoO₃ = 0.50 and incremental presence of K₂SO₄ (0 ≤ Y ≤ 2) and temperatures as indicated by each spectrum. X₀ₓMoO₃ denotes the formal mole fraction of MoO₃ in the binary MoO₃−K₂S₂O₇ mixture. For spectrum recording parameters, see the caption of Figure 2.

Figure 11. Raman spectra of molten MoO₃−K₂S₂O₇−K₂SO₄ mixtures with Y = 1 [i.e., n(SO₄²⁻)/n(Mo) = 1] obtained in an oxygen atmosphere (P₀₂ = 0.2 atm) at 650 °C with X₀ₓMoO₃, as indicated by each spectrum. X₀ₓMoO₃ denotes the formal mole fraction of MoO₃ in the binary MoO₃−K₂S₂O₇ mixture. For spectrum recording parameters, see the caption of Figure 2.
The second part of Table 2 summarizes Raman band wavenumbers, intensity and polarization characteristics, and band assignments, as discussed in the next section, along with the proposed structural models for $[\text{MoO}_2(\text{SO}_4)_3]_m^{4m-}$.

Structural Models for $\text{MoO}_2(\text{SO}_4)_3$ 4^- and $[\text{MoO}_2(\text{SO}_4)_3]_m^{4m-}$. The proposed structural models for $\text{MoO}_2(\text{SO}_4)_3$ 4^- in its monomeric and associated/polymeric form, $[\text{MoO}_2(\text{SO}_4)_3]_m^{4m-}$, are inspired from the crystal structures of the compounds $\text{K}_4\text{MoO}_2(\text{SO}_4)_3$ and $\text{Na}_4\text{MoO}_2(\text{SO}_4)_6$, respectively. As stated earlier, in the context of the discussion pertaining to Figures 8−10, the existence of a strong polarized band at 935 cm$^{-1}$ and a weaker depolarized band at 895 cm$^{-1}$ in full conformity with the occurrence of a dioxo MoO_2 unit (i.e., corresponding to its symmetric and antisymmetric stretching modes) within $\text{MoO}_2(\text{SO}_4)_3$ 4^- and $[\text{MoO}_2(\text{SO}_4)_3]_m^{4m-}$. By taking into account the established existence of a dioxo MoO_2 core with coordinated sulfate ligands and invoking a 6-fold coordination for Mo, we propose the structural model depicted in Figure 12A for the monomeric $\text{MoO}_2(\text{SO}_4)_3$ 4^- anionic complex. The proposed configuration involves two unidentate sulfate groups and one bidentate chelating group. The oxide ligands occupy one apical and one equatorial position, thereby forming a bent MoO_2 unit. The remaining four corners of the MoO_6 distorted octahedron constituting the first coordination sphere of Mo comprise O atoms linking to two unidentate and one bidentate chelating SO_4 groups. With increasing formal content of MoO_2, the bidentate chelating sulfate group “opens up” to become bridging to an adjacent Mo atom, and the vacant coordination site can be occupied by a bridging sulfate from another adjacent $\text{MoO}_2(\text{SO}_4)_3$ 4^- unit, thereby leading to the double bridged associated/polymeric configurations shown in Figure 12B,C.

Figure 12. (A) Structural model for the monomer $\text{MoO}_2(\text{SO}_4)_3$ 4^- molten complex, according to ab initio DFT/B3LYP/3-21G calculations. (B) Structural model for the $[\text{MoO}_5(\text{SO}_4)_2](\mu-\text{SO}_4)$ 2^- dimer complex with two bridging sulfate groups and four unidentate terminal sulfate groups. (C) Plausible section of an associated/polymeric $[\text{MoO}_2(\text{SO}_4)_3]_m^{4m-}$ molten complex.

Of special interest is the following discussion on the vibrational properties of the $[\text{MoO}_2(\text{SO}_4)_2]_m^{4m-}$ and $[\text{MoO}_2(\text{SO}_4)_3]_m^{4m-}$ molybdenum(VI) oxosulfato complexes formed in the $\text{MoO}_3-K_2\text{S}_2\text{O}_7$ and $\text{MoO}_3-K_2\text{S}_2\text{O}_7-K_2\text{SO}_4$ molten mixtures, respectively. The ν/ν_m pair of the MoO_3 symmetric and asymmetric stretching modes occurs at 935/895 cm$^{-1}$ for the $\text{MoO}_2(\text{SO}_4)_3$ 4^+ complex, that is, ca. 25 cm$^{-1}$ lower compared to the respective 957/918 cm$^{-1}$ counterparts of the $\text{MoO}_2(\text{SO}_4)_3$ 2^- complex. The wavenumbers, band relative intensities, and polarization characteristics of both ν/ν_m pairs are in full conformity with the expected vibrational properties for symmetric and asymmetric stretching modes of a transition-metal dioxo $M(\equiv\text{O})_2$ unit (see also Table 3 for a summary of characteristic vibrational wavenumbers). The more congested coordination around the Mo atom of the $\text{MoO}_2(\text{SO}_4)_3$ 4^+ complex (i.e., one more sulfate per Mo compared to the $\text{MoO}_2(\text{SO}_4)_3$ 2^- species (see the proposed structural models in Figures 4 and 12) accounts for slightly weaker bonding within its MoO_2 cores and lower band wavenumbers for its ν/ν_m modes. Furthermore, the occurrence of unidentate SO_4 groups among the SO_4 groups within the $\text{MoO}_2(\text{SO}_4)_3$ 4^+ complex formed in the ternary system justifies a lower wavenumber for the terminal S−O stretching compared with the (exclusively) bidentate SO_4 units participating in the $\text{MoO}_2(\text{SO}_4)_3$ 2^- and $[\text{MoO}_2(\text{SO}_4)_3]_2^{2m-}$ complexes in the binary system (1041 versus 1046 cm$^{-1}$).

Ab Initio Modeling of $\text{MoO}_2(\text{SO}_4)_3$ 4^- and $[\text{MoO}_2(\text{SO}_4)_3](\mu-\text{SO}_4)$ 2^-. Based on the crystal structures of $\text{K}_4[\text{MoO}_2(\text{SO}_4)_3]$ and $\text{K}_4[\text{W}_2\text{O}_7(\text{SO}_4)_2](\mu-\text{SO}_4)_2$, we calculated optimized geometric structures for the $[\text{MoO}_2(\text{SO}_4)_3]^{4-}$ anion and the analogous Mo VI anion $[\text{MoVI}_2\text{O}_2(\text{SO}_4)_2](\mu-\text{SO}_4)_2^{8-}$ (see Figure 12A,B). The modeling was limited to the available 3-21G basis set for molybdenum, but the predicted geometry for the $[\text{MoO}_2(\text{SO}_4)_3]^{4-}$ anion came out with reasonable parameters, as seen in Table S3 (Supporting Information). From that geometry, we calculated the vibrational modes for $[\text{MoO}_2(\text{SO}_4)_3]^{4-}$ (see Table S4, Supporting Information) and the spectrum (shown in Figure 13). The structure and spectrum were calculated with the Gaussian 03W program. The calculated wavenumbers had to be scaled by a factor of 1.22 to obtain acceptable values compared to experiment, but this is understandable because the 3-21G basis set is very simple. The chosen 3-21G basis set is the largest all-electron set available for molybdenum in Gaussian. This level of theory is known to be deficient for hypervalent molecules because of a lack of polarization functions, and anions generally require diffuse functions. The use of this 3-21G set would result in S−O distances that are too long and frequencies that are too small. This explains the need for scaling by a number larger than 1. It should be remembered that the corresponding experimental mixture $X_{\text{MoO}_3}(\text{SO}_4)=0.50$ and $Y=1$ (see Figure 10e) was in a state of equilibrium and, therefore, even for $\text{MoO}_3/\text{K}_2\text{S}_2\text{O}_7/\text{K}_2\text{SO}_4=1:1:1$ (in analogy with what was seen for tungsten23), gave signals corresponding to the content of SO_4^{2-}. The band shapes at the high experimental temperature were modeled by assuming Gaussian shapes of 20 cm$^{-1}$ half-widths at half-heights. Two configurations were tried for the monomer, but the one similar to that of the crystal structure22 was found to be the most stable (Figure 12A). It seems that chelation taking place opposite to the two oxide ligands (from MoO_2) is preferred (minimum energy $= -6194.34847461$ Ha) relative to a configuration where the two oxide ligands (in MoO_2) are opposite to one terminal sulfate and one of the chelations (minimum energy $= -6194.33727020$ Ha). For the dimer...
The spectrum is simpler, and the minimum energy is not as low as in the monomer. Because 102 normal modes of the dimer appear similar to the 48 modes of the monomer (Table S4, Supporting Information). Because the sulfates in the dimer are all unidentately terminal bound, the structure of the optimized dimer geometry is given in Figure 12B, and the spectrum is also included in Figure 13. The calculations were modeled by assuming Gaussian shapes of 20 cm\(^{-1}\) half-widths at half-heights, corresponding approximately to the high temperature of 650 °C.

\[\left[\{\text{Mo}^\text{VI}\text{O}_2\text{SO}_4\}_3\right]^{8-}, \text{the calculated minimum was found to be } -12387.69014870 \text{ Ha } (= -6193.84505745 \times 2 \text{ Ha}). \text{The structure of the optimized dimer geometry is given in Figure 12B, and the spectrum is also included in Figure 13.} \]

CONCLUSIONS

Solid molybdenum(VI) oxide dissolves in considerable amounts (i.e., up to \(X_{\text{MoO}_3} = 0.50\) in molten \(K_2S_2O_7\) at elevated temperatures (400 °C). The effects of composition and temperature on the molecular structure and vibrational properties of the molybdenum(VI) oxosulfato complexes formed were studied by Raman spectroscopy up to 640 °C and for \(0 \leq X_{\text{MoO}_3} \leq 0.50\). The spectral features are fully consistent with the occurrence of a dioxo MoO\(_2\) configuration as a core, with Mo in a distorted octahedral 6-fold coordination. The Raman band intensities were used to infer the stoichiometry of the complex formation reaction, and in combination with the vibrational properties established, it was found that the dissolution reaction has a 1:1 stoichiometry, that is

\[m\text{MoO}_3 + m\text{S}_2\text{O}_7^{2-} \rightarrow \left[\text{MoO}_2\text{S}_2\text{O}_7\right]^{2m-}\]

accounting for the formation of monomeric (\(m = 1\)) species in dilute melts and associated/polymeric units (\(m > 1\)) in more concentrated melts. Two bidentate chelating sulfates are present in the Mo coordination sphere in the case of monomeric \(\text{MoO}_2\text{S}_2\text{O}_7\) \(^{2-}\), whereas alternative possibilities involving bidentate bridging sulfates are incurred in the case of polymeric \(\left[\text{MoO}_2\text{S}_2\text{O}_7\right]^{2m-}\) units. The symmetric and antisymmetric \(\text{O}==\text{Mo}==\text{O}\) stretching (\(\nu_s\) and \(\nu_u\)) occur at 957 cm\(^{-1}\) (strong, polarized) and 918 cm\(^{-1}\) (medium, depolarized), respectively, whereas the terminal S—O stretching of coordinated sulfates is observed at 1046 cm\(^{-1}\). With increasing temperature in concentrated melts (i.e., \(X_{\text{MoO}_3} \geq 0.40\)), a partial dissociation is evidenced, leading to the formation of \(\text{Mo—O—Mo}\) bridges as “defects” within the polymeric chains.

The study of the corresponding dissolution reaction of \(\text{MoO}_3\) in \(K_2S_2O_7\) when \(K_2SO_4\) is also present showed that a modified molybdenum(VI) oxosulfato complex is formed according to

\[m\text{MoO}_3 + m\text{S}_2\text{O}_7^{2-} + m\text{SO}_4^{2-} \rightarrow \left[\text{MoO}_2\text{S}_4\text{O}_7\right]^{4m-}\]

The Raman spectra showed that the resulting Mo\(^{VI}\) complex still contains a dioxo MoO\(_2\)\(^{2+}\) core with the Mo atom in a modified distorted octahedral 6-fold coordination. The coordination sphere around each Mo atom involves (apart from the two oxide ligands) two unidentate sulfates and two bidentate bridging sulfates in a congested structural environment, as a result of which the \(\nu_s/\nu_u\) Mo(=O)\(^2+\) stretching counterparts occur at lower wavenumbers, namely, 935 cm\(^{-1}\) (strong, polarized) and 895 cm\(^{-1}\) (medium, depolarized), respectively. Detailed structural models are proposed for the Mo\(^{VI}\) complexes in full consistency with the Raman band assignments and ab initio modeling.

ASSOCIATED CONTENT

Supporting Information

Relative integrated reduced Raman intensities (peak areas in arbitrary units) of representative bands of the C\(^{2-}\) Mo\(^{VI}\) complex (at 957 cm\(^{-1}\)) and the \(\text{S}_2\text{O}_7^{2-}\) solvent (at 1085 cm\(^{-1}\)) measured from the Raman spectra of molten \(\text{MoO}_3\)–\(K_2S_2O_7\) mixtures at 450 °C (Table S1); calculated equilibrium mole fractions of Mo\(^{VI}\) complex (C\(^{2-}\)) and \(\text{S}_2\text{O}_7^{2-}\) and values of \(P^\text{0}\) (based on the main complex band at 957 cm\(^{-1}\)) for various assumed possible values of the stoichiometric coefficient, \(n\), of eq 1 (Table S2); comparison of the geometric parameters of an isolated \(\left[\text{MoO}_2\text{S}_2\text{O}_7\right]^{4+}\) ion calculated by ab initio/DFT methods (restricted B3LYP/3-21G) and found for the X-ray structure of the \(K_4[\text{MoO}_2\text{S}_2\text{O}_7]\)\(^{2+}\) (Table S3); and calculated vibrational spectra and assignments for the \(\left[\text{MoO}_2\text{S}_2\text{O}_7\right]^{3-}\) ion (Table S4). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: bogosian@iceht.forth.gr. Phone +30-2610 969557.

Notes

The authors declare no competing financial interest.

REFERENCES
