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ABSTRACT
When applying the barycentric correction to a precise radial velocity measurement, it is
common practice to calculate its value only at the photon-weighted mid-point time of the
observation instead of integrating over the entire exposure. However, since the barycentric
correction does not change linearly with time, this leads to systematic errors in the derived
radial velocities. The typical magnitude of this second-order effect is of order 10 cm s−1, but it
depends on several parameters, e.g. the latitude of the observatory, the position of the target on
the sky, and the exposure time. We show that there are realistic observing scenarios, where the
errors can amount to more than 1 m s−1. We therefore recommend that instruments operating
in this regime always record and store the exposure meter flux curve (or a similar measure)
to be used as photon-weights for the barycentric correction. In existing data, if the flux curve
is no longer available, we argue that second-order errors in the barycentric correction can be
mitigated by adding a correction term assuming constant flux.

Key words: instrumentation: spectrographs – techniques: radial velocities.

1 INTRODUCTION

In order to search for and characterize potential Earth analogues
outside our own Solar system, astronomers will need precise radial
velocity (PRV) instruments that can deliver a yet unseen precision
of a few cm s−1 over time-scales of several years (e.g. Fischer
et al. 2016). Among the numerous prerequisites for being able
to make such measurements is the ability to accurately transform
the measured Doppler shift into a stationary reference frame with
respect to the barycentre of our Solar system.

Wright & Eastman (2014) presented a detailed review of how
to calculate and perform barycentric corrections to an accuracy
better than 1 cm s−1. The authors provided an IDL implementation,
ZBARYCORR, which has later been ported to PYTHON (Kanodia &
Wright 2018). However, one important question that has not been
fully addressed in literature is how to best apply the instantaneous
barycentric correction to an exposure that is extended in time.
During the integration time of an exposure, usually tens of minutes,
there can be a significant change in the barycentric correction,
mainly due to Earth’s rotation, and the recorded spectrum will
get slightly smeared out on the detector, effectively broadening

� E-mail: rtr@space.dtu.dk

the stellar absorption lines. Time-variable changes in the flux that
reaches the spectrograph, caused by clouds, variable seeing, poor
telescope guiding, or other issues, will make this smearing non-
uniform, shift the weight of the broadened lines, and introduce
spurious Doppler shifts. This type of error, which we will refer
to in this paper as the first-order effect, is usually corrected for
by monitoring the photon flux through the spectrograph with an
exposure meter. From these measurements, the photon-weighted
mid-point time of the exposure can be determined, ensuring that
the barycentric velocity is calculated at the mean time of arrival
of the collected photons instead of the ‘geometric’ mid-point time
of the exposure, equidistant from the shutter open and close times.
However, this method neglects the fact that the barycentric correc-
tion does not change linearly. As we will show in the following, a
more correct approach is to weight the corrected velocity with the
exposure meter flux curve and in that way capture the higher order
variation of the barycentric motion of the observatory. Neglecting
what we will refer to as the second-order effect can lead to typical
systematic errors of order 10 cm s−1 for exposure times of 30–60
min. In some quite realistic observing scenarios, it will cause errors
greater than 1 m s−1.

The problem was first pointed out in Fischer et al. (2016),
referring to an early draft version of this manuscript, and it was
briefly mentioned again in Blackman et al. (2017), along with
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a description of the chromatic dependence of the barycentric
correction. This paper aims to provide a more detailed and formal
description of how to compute the barycentric correction for an
extended exposure, estimate the error that arises when the second-
order effect is neglected, and discuss some recommendations for
future observations and existing data.

In Section 2, we describe how to calculate the barycentric
correction for an extended exposure with the best possible accuracy,
and in Section 3, we estimate the errors that result from using the
geometric and photon-weighted mid-point times. In Section 4, we
simulate the error using the full barycentric correction algorithm
to confirm our analytic estimate and to understand how the error
depends on the shape of the exposure meter flux curve. In Section 5,
we discuss implications for exoplanet mass measurements, how to
optimize observing strategies, and how to deal with and possibly
improve existing data.

2 PHOTON-WEIGHTED BARYCENTRIC
CORRECTION

Using the methods of Wright & Eastman (2014), we are easily able
to calculate the barycentric correction zB with a precision better
than 1 cm s−1 for a photon arriving from a star to a telescope on
Earth at a given point in time. As emphasized in that paper, zB is a
redshift, and it must be applied multiplicatively to the measurement,
zmeas, i.e.

1 + z = (1 + zmeas)(1 + zB), (1)

where z is the ‘true’ barycentric-motion-corrected redshift. Thus
the corrected radial velocity is calculated as

v = cz = c
��

1 + vmeas

c

� �
1 + vB

c

�
− 1

�
, (2)

where we express the barycentric correction as a velocity, vB = czB.
When taking an exposure of length �t in a spectrograph, one

would ideally calculate the instantaneous barycentric correction for
each individual photon at the time it arrives to the telescope, then
average all the calculated values for the collected photons in each
pixel on the detector. If f(t) is proportional to the flux of photons in
one pixel, and v(t) denotes the barycentric corrected velocity as a
function of time, the average corrected velocity of the exposure in
that pixel can be expressed as

〈v〉 =
� t0+�t/2

t0−�t/2
v(t)f (t)dt

�� t0+�t/2

t0−�t/2
f (t)dt , (3)

where t0 is the geometric mid-point time of the exposure.
Depending on the type of detector, f(t) can be obtained in various

ways. When infrared arrays are used with ‘up-the-ramp’ sampling,
which means sampling the voltage of each pixel every few (∼10)
seconds throughout the exposure, it produces a direct measure of
the time history of the photon arrivals. This is how instruments
like the Habitable-Zone Planet Finder (Mahadevan et al. 2012) are
operated. CCD detectors work differently, and it is not possible to
directly monitor the flux received by the detector without reading
out the image. Instead one can use the exposure meter flux as a
proxy. Landoni et al. (2014) and Blackman et al. (2017) describe
how to use a multichannel exposure meter to measure f(t) for a
particular wavelength associated with a pixel or a section of the
detector.

In this paper, we will refer to f(t) as the exposure meter flux curve,
although our findings also apply to instruments with infrared arrays

or other ways of monitoring flux variations. We will limit ourselves
to a single wavelength channel (or a single pixel) and instead
focus on quantifying the errors that can result from calculating
the barycentric correction at a defined mid-point time rather than
using equation (3). The difference between the geometric and
photon-weighted mid-point times, and how the photon-weighted
barycentric correction can differ from what is calculated at the mid-
point times, is illustrated by an example in Fig. 1.

3 QUANTIFYING THE ERRORS

On short time-scales (hours), the change in the barycentric correc-
tion vB is dominated by the diurnal rotation of the Earth. For a
telescope at location (lat, lon) observing a star at position (α, δ), the
projected velocity of the telescope towards the star is given by

− vB(t) ≈ 2�R⊕
24 h

cos(lat) cos(δ) sin (ψ(t)) + constant, (4)

where ψ(t) is the local hour angle, expressed in radians, written
here in terms of the local sidereal time (LST):

ψ(t) = 2�
24 h

LST(t, lon) − α. (5)

The hour angle, and thus vB(t), is a sinusoidal variation with a period
of 23.93 h and amplitude

V0 = 2�R⊕
24 h

cos(lat) cos(δ),

which can be up to 463 m s−1 (equatorial velocity of the Earth).
The time derivative of ψ(t), which we will soon need, can be
approximated as 2�/(24 h). For now, we consider a star with
vmeas = 0, allowing us to set v = vB

The photon-weighted mid-point time of an exposure, 〈t〉, can be
defined in the same way as how we defined the average corrected
velocity in equation (3):

〈t〉 =
� t0+�t/2

t0−�t/2
tf (t)dt

�� t0+�t/2

t0−�t/2
f (t)dt . (6)

We can now expand v around 〈t〉 with a second-order Taylor
polynomial:

v(t ′) ≈ v(〈t〉) − 2�V0 cos(ψ(〈t〉)) t ′ − 〈t〉
24 h

+ 2�2V0 sin(ψ(〈t〉))
�

t ′ − 〈t〉
24 h

	2

. (7)

If we define the first-order error as the difference between calculat-
ing the barycentric correction at the geometric and photon-weighted
mid-points, respectively, it can be approximated as

v(t0) − v(〈t〉) ≈ −2.0 m s−1 cos(lat) cos(δ) cos(ψ(〈t〉)) t0−〈t〉
1 min . (8)

A systematic error of up to 2 m s−1 for every minute of difference
between the geometric and photon-weighted mid-point times is
a quite severe error in PRV context. It becomes largest when
observing stars on the meridian, which is where most observers
usually try to observe their targets. The community is well-aware of
this effect, and it has become a standard procedure at almost every
PRV instrument to correct for this by recording the photon-weighted
mid-point time for each exposure.

By inserting equation (7) into equation (3), we can estimate the
second-order error, which we define as the difference between the
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Photon-weighted barycentric correction 2397

Figure 1. Left-hand panel shows the instantaneous barycentric correction (black curve) for a star during one 60-min exposure at Mauna Kea. The fictional,
rising target is chosen such that the exposure starts when the star is 30◦ above the horizon (airmass = 2.0), and such that we are looking due east at the
geometric mid-point time of the exposure. The lower panel shows what the exposure meter flux could look like during the exposure, e.g. if a thin cloud passes
over the telescope or if the seeing changes. We use the flux curve to compute the photon-weighted mid-point time (red) and the photon-weighted barycentric
correction (blue). The zero-point of the time axis is set at the geometric mid-point time of the exposure (green). The dashed grey line is the tangent to the
barycentric correction curve at the geometric mid-point time, emphasizing the curvature of the barycentric correction function. The right-hand panel shows an
enlarged view around the centre of the exposure. In this particular case, there is a difference of 1.25 m s−1 between the photon-weighted barycentric correction
(blue) and the barycentric correction at the photon-weighted mid-point time (red).

corrected velocity at the photon-weighted mid-point time, v(〈t〉),
and the photon-weighted average of the corrected velocity, 〈v〉:

v(〈t〉) − 〈v〉 ≈ −2�2V0 sin(ψ(〈t〉)) 〈t2〉 − 〈t〉2

(24 h)2
. (9)

The second-order error is caused by the curvature of vB, as shown
in Fig. 1. In principle, we are moving a smoothing filter over the
instantaneous barycentric correction function, using the exposure
meter flux curve as the smoothing kernel. This means that the point
(〈t〉, 〈v〉) will always land on the inside of the curvature, and the
second-order error will thus always have the same sign as the diurnal
component of vB (positive east of the meridian and negative west of
the meridian). We also note that the magnitude of the second-order
error will usually have a dependence on (�t)2.

Whereas the first-order error reaches its maximum when the target
passes over the meridian, the second-order error gets largest at
hour angle ±6h and declination zero. This is where the celestial
equator intersects with the horizon, and it is thus not observable. A
more useful number is the maximum error possible above a certain
altitude on the sky, and we therefore transform equation (9) to
horizontal (alt,az) coordinates. With a bit of spherical trigonometry,1

one can show that

cos(δ) sin(ψ) = − cos(alt) sin(az).

1See e.g. https://web.archive.org/web/20181013052114/http://star-www.s
t-and.ac.uk/∼fv/webnotes/chapter7.htm.

If we consider a uniform exposure [i.e. f(t) = constant], we can
evaluate the integrals contained in 〈t〉 and 〈t2〉:

v(〈t〉) − 〈v〉 ≈ −1.32 m s−1 cos(lat) cos(δ) sin(ψ)



�t

1 h

�2

≈ 1.32 m s−1 cos(lat) cos(alt) sin(az)



�t

1 h

�2

. (10)

The error is largest at az = ±90◦, i.e. when facing straight east
or west. We adapt a lower limit on the altitude of 30◦ (airmass =
2.0) based on the common practice we have seen at various PRV
instruments. Since we would like to observe the entire exposure
above the altitude limit, the actual limit for the ‘alt’ parameter in
equation (10) depends on the latitude and exposure time. Therefore,
in the following example for Mauna Kea (Hawaii), we set the
altitude limit to 37◦ for a 60-min exposure and 33.5◦ for a 30-min
exposure.

As shown in Fig. 2, the majority of current and planned PRV
instruments are located at observatories near latitude ±30◦, with
Mauna Kea at latitude +20◦ being the closest to equator. If we
expose for 30 min at this latitude and employ worst-case altitude
and azimuth angles, as described above, the second-order error
becomes 0.25 m s−1; if we double the exposure time to 60 min, the
error quadruples to 1.0 m s−1. In other words, using the photon-
weighted mid-point time for the barycentric correction can lead to
significant systematic errors even at the 1 m s−1 RV precision level.

For non-uniform flux curves, the result in equation (10) needs
to be altered only by a scaling factor. As an example, it can

MNRAS 489, 2395–2402 (2019)
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2398 R. Tronsgaard et al.

Figure 2. Left-hand panel: Locations of 25 different observatories that are hosting or will soon be hosting one or more PRV instruments (see e.g. Plavchan
et al. 2015; Fischer et al. 2016; Wright & Robertson 2017). Most of these sites are located around latitude ±30◦, yielding cos (lat) ≈ 0.87. Of these instruments,
Mauna Kea (Hawaii) at latitude +20◦ is the PRV site closest to equator, with cos (lat) = 0.94. Right-hand panel: Systematic error for the realistic worst-case
observing scenario. A rising (or setting) target due East (or West) is observed with the exposure starting (or ending) at 30◦ altitude (airmass = 2.0). Solid and
dotted lines indicate the shape of the exposure meter flux curve. Markers indicate the exposure time.

be shown that a V-shaped flux curve, symmetrically dropping to
zero at the geometric mid-point time, yields an effect of exactly
1.5 times the uniform flux result. In general, if photons are missing
in the middle of the exposure (e.g. due to a cloud passing over the
telescope), the second-order error increases. If photons are concen-
trated towards one end of the exposure, the error second-order error
decreases.

We finally note that although we obtained these results for vmeas =
0 in equation (2), they can safely be generalized to any vmeas 
 c.
The factor (1 + vmeas/c) has a significant effect on the absolute
value of the barycentric correction (Wright & Eastman 2014), but
its influence on the size of the second-order error is negligible even
at the 1 cm s−1 precision level.

4 SIMULATED OBSERVATIONS

We have used the BARYCORRPY package (Kanodia & Wright 2018)
to simulate, under various conditions, the systematic second-order
error that would result from not photon-weighting the barycentric
correction.

For each set of simulations, we let the same observation happen
at the same time on multiple sky positions. We generate an exposure
meter flux curve with a given shape, exposure time, and sampling
cadence. Then, for a range of sky positions, we calculate the
barycentric correction both as the photon-weighted average, 〈v〉,
and at the photon-weighted mid-point time, v(〈t〉). The integrals
are carried out as simple Riemann sums, evaluated at the geometric
mid-point of every exposure meter step. Finally, the second-order
error is calculated as v(〈t〉) − 〈v〉.

In Figs 3–5, we use the location of Mauna Kea Observatory
(19.8222◦N, 155.4749◦W, 4205 m) and select the time as 10:20 UTC

(local midnight) on an arbitrarily chosen night (2017 September 09).
For each curve, we fix the declination and vary the hour angle. We
do this for various exposure times (Fig. 3), declinations (Fig. 4),
and exposure meter flux curves (Fig. 5). The solid curves show the
simulated errors, and the dotted curves in the background show the
analytic estimates from equation (10).

Figure 3. Second-order error, v(〈t〉) − 〈v〉, simulated as function of local
hour angle for various exposure times. Each point on the curves corresponds
to an exposure at that hour angle. The declination and minimum/maximum
hour angle is chosen for each exposure time such that the telescope is
pointing straight east/west at the geometric mid-point of the exposure, while
the exposure starts/ends at 30◦ altitude. The exposure meter flux is uniform.

In Figs 3 and 5, when the exposure starts at 30◦ altitude, the
declination and the minimum hour angle are chosen such that the
rising target is situated at az = 90◦ at the geometric mid-point
time – and vice versa for the maximum hour angle. In Fig. 4, we
simulate various declinations, while still choosing the minimum and
maximum hour angle such that the exposure starts and ends at 30◦

altitude or above.
The uniform 60-min exposure at δ = +11.7◦ is present in all

three plots, and the size of its error ranges between ±1.00 m s−1 in
agreement with the analytic estimate from Section 3. In Fig. 5, we
simulate different shapes of the exposure meter flux curve, and we
verify that the error increases by a factor of 1.5 when the photon
flux drops and rises again during the exposure.

In Fig. 6, we provide contour maps of the sky for three observa-
tories at different latitudes, showing for a 30-min uniform exposure
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Photon-weighted barycentric correction 2399

Figure 4. Second-order error, v(〈t〉) − 〈v〉, simulated as function of local
hour angle for various declinations. The exposure time is 1800 s with a
uniform flux curve. All curves end at 37◦ altitude, ensuring that all exposures
begin and end above 30◦ altitude. The two � markers indicate the maximum
error for the worst declination with this altitude limit (δ = 11.7◦). The
exposure meter flux is uniform.

how the second-order error depends on the sky position. The 30-min
curve in Fig. 3 corresponds to a horizontal cut through the central
diagram in Fig. 6. The area defined by the dashed red line contains
all the observations that both start and stop at an altitude higher than
30◦. The asymmetric shape of the area gives a visual understanding
why the maximum effect is not reached at declination zero.

All the simulations in Figs 3–6 are made with 1 Hz sampling
cadence. When we generate the same plots with 0.1 Hz sampling,
the results are practically identical. The way we interpret this is
that our cadence is sufficiently high that the results are not affected
by it. Cadence effects can be analysed in more detail by binning
real exposure meter flux curves to different bin sizes. We expect
the result of such an analysis to depend on the signal-to-noise level
and other specifics of the particular instrument, and it is therefore
beyond the scope of this manuscript.

5 DISCUSSION

In the preceding sections, we have demonstrated the dependence
and magnitude of a second-order error in the barycentric correction
when applied to longer exposures. In the following, we will discuss
the possible implications for exoplanet mass measurements, and
we will explore some options for mitigating errors when observing
and/or analysing data, in cases where the exposure meter is broken
or unavailable.

5.1 Implications for exoplanet mass measurements

As a new generation of PRV spectrographs are aiming at the 10
and 1 cm s−1 regimes, hopes are that astronomers will soon be able
to detect Earth-like planets around Sun-like stars. If we were to
observe the gravitational tug that our own planet exerts on the Sun,
the RV semi-amplitude would be as little as 9 cm s−1. We have
shown in this paper that the second-order error on the barycentric
correction can easily reach and exceed this level. Next-generation
PRV instruments must therefore record the exposure meter flux
curve for each observation, allowing the observer or an automated
pipeline to calculate the photon-weighted barycentric correction.

Figure 5. Second-order error, v(〈t〉) − 〈v〉, simulated as function of local
hour angle for various shapes of the exposure meter flux curve. The
shapes are a linear ramp, a uniform exposure, a centred V-shape, and a
V-shape offset from the centre. The dotted curves in the background are the
analytically approximated values, made by multiplying the uniform result
in equation (10) by 0.67, 1.00, 1.29, and 1.50.

We recommend that the exposure meter data are stored and archived
along with the observed spectrum, allowing the photon-weighted
barycentric correction to be fully reproduced and checked at a later
time. Although the calculation is trivial, mistakes can still happen
(e.g. a broken FITS header) and the observer should always have the
option to go back and recalculate the barycentric correction from
scratch for each data point. As argued by Wright & Eastman (2014)
and elaborated by Blackman et al. (2017), it is also recommended
that exposure meters split the light into multiple wavelength chan-
nels in order to accommodate wavelength-dependent fibre coupling
and seeing, as it is done at instruments like ESPRESSO (Pepe et al.
2010; Landoni et al. 2014) and EXPRES (Jurgenson et al. 2016;
Blackman et al. 2017).

Over the last decade, instruments like HARPS (Mayor et al.
2003) and HARPS-N (Cosentino et al. 2012) have demonstrated
their capability to measure RVs with a precision of 1 m s−1 (Fischer
et al. 2016). One could argue that the barycentric second-order error
is mostly negligible at this level, but as we have seen, situations exist
where it becomes a substantial fraction of or even more than 1 m s−1.
The barycentric second-order errors for a set of RV measurements
do not necessarily form a normal distribution – they depend on
weather, atmospheric seeing, observing strategies, and decisions
(or mistakes) made by the observers. Our concern is that sometimes
these errors may alter the measured velocities in ways that change
the apparent amplitude of the RV signal. If that happens, it can
affect the modelled mass and/or eccentricity.

Most people seek to observe their targets close to the meridian,
where the second-order effect diminishes, but sometimes scheduling
constraints requires a target to be observed at higher airmass. One
particular example of this is when a target is followed throughout
its observing season. When it first becomes visible, in the beginning
of the observing season, it will be rising in the east, and it will be
observed at a large negative hour angle in order to expose at the
highest possible altitude before twilight. As time passes, the target
becomes visible all night and observable near the meridian. Towards
the end of the season, the target is setting in the beginning of the
night, and the observer needs to observe at a large positive hour
angle. For a target near the celestial equator, with 30-min exposure
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2400 R. Tronsgaard et al.

Figure 6. Second-order error, v(〈t〉) − 〈v〉, simulated as function of sky position at three different observatories. We simulate a 30-min exposure with uniform
flux, observed at local midnight. The colour indicates the size of the error as a function of the target position at the geometric mid-point time; the dashed
red lines indicate the altitude limit that ensures the exposure is completed above 30◦, while solid red lines are contours, drawn for every 0.05 m s−1. The
observatories are Happy Jack (EXPRES), Mauna Kea (e.g. HiRes, KPF, MAROON-X, and SPIROU), and La Silla (HARPS and CORALIE); for a more
comprehensive list of instruments, see e.g. Plavchan et al. (2015), Fischer et al. (2016), and Wright & Robertson (2017).

time, the insufficiently corrected velocities could have an apparent
±25 cm s−1 ‘curl’ with opposite signs in the beginning and end of
the observing season.

A similar situation could happen when a target instead of once
per night is visited twice per night. An observer may try to separate
the observations in time as much as possible by observing in the

beginning and end of the night at the highest feasible airmass. This
could lead to systematic barycentric correction errors where the
early and late observations each are offset by e.g. 25 cm s−1 with
opposite signs. Sometimes, this type of data is fitted with a nightly
offset to account for trends due to stellar activity (Howard et al.
2013; Pepe et al. 2013). Any RV variation within a night would thus
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