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Abstract: This paper assesses the performance of three convolutional neural networks for
object detection at sea using Long Wavelength Infrared (LWIR) images in the 8− 14�m range.
Capturing images from ferries and annotating 20k images, fine-tuning is done of three state
of art deep neural networks: RetinaNet, YOLO and Faster R-CNN. Targeting on vessels and
buoys as two main classes of interest for navigation, performance is quantified by the cardinality
of true and false positives and negatives in a random validation set. Calculating precision and
recall as functions of tuning parameters for the three classifiers, noticeable differences are found
between the three networks when used for LWIR image object classification at sea. The results
lead to conclusions on imaging requirements when classification is used to support navigation.

Keywords: Object Detection, Autonomous marine crafts, Navigation, Long-wave Infra-red,
Detection at sea, Autonomous Ship.

1. INTRODUCTION

Accurate detection of objects at sea is an important
step towards safe autonomous navigation and collision
avoidance for marine vessels. Relevant objects span from
large ships and ferries to small sailing boats, kayaks and
other objects without a clear radar signature. It also
includes stationary objects such as buoys, land, bridge
pillars and similar. The location of these objects contains
essential information for safe navigation.

It is necessary to identify objects within a certain distance
of own vessel when aiming at assisted or unattended
navigation. Radar, ECDIS and GNNS can provide such
an overview, but some leisure boats and smaller objects
on the water are difficult to identify by radar. Object
classification using electro-optical sensors can address this
problem and be a reasonable alternative to a human
lookout (Blanke et al., 2019).

Methods reported in use utilize images in the visible and
infrared parts of the spectrum (Moreira et al., 2014) and
(Prasad et al., 2017). The latter applied traditional com-
puter vision methods, including different edge detection
techniques and concluded that thermal imaging has dis-
tinct features but has drawbacks including sensitivity to
weather change and saturation at day time. Other studies
aimed at detection from the air, see (Leira et al., 2015)
and (Rodin and Johansen, 2018), who found the combi-
nation of visible light and thermal range images to be very
sensitive.

Both detection and classification of objects are needed
for safe navigating at sea. Deep learning methods have
proven to work well in a large variety of image-based object
classification tasks and are popular e.g. within autonomous
driving. However, for object detection at sea, comparative
studies and guidance to the choice of architectures are
sparse, so this paper focuses on applying these models and
investigate how well they perform. We employ three state
of the art deep neural networks, specifically RetinaNet
(Lin et al., 2018), YOLOv3 (Redmon and Farhadi, 2018)
and Faster R-CNN (Girshick, 2015).

The focus of this study is on Long Wavelength Infrared
(LWIR) imaging. A dataset of LWIR images was acquired
from ferries in near coastal service and objects at a large
range of distances are annotated in two main classes:
boats and buoys. The inputs to each of the networks
are single images and the annotated data is used for
training and testing. Performance indicators are calculated
on the outputs of the three networks and show that they
perform well on LWIR images. The study also investigates
the networks’ ability to detect and classify boats and
buoys at far distance and provide statistics to evaluate
the three networks for the purpose of object detection for
navigation.

The paper is organized as follows. Section 2 provides a brief
overview of object classification using deep learning and
Section 3 refers to results of others. Section 4 introduces
training and validation data and details on the three
network architectures compared in this study. Performance
is presented in Section 5 and discussion of results and



of navigation perspectives in Sections 6 and 7. Section 8
presents the conclusions.

Table 1. Acronyms and Abbreviations

abbreviation meaning

CNN Convolutional Neural Net
COCO Microsoft image dataset for deep learning
CPA Closest point of approach
DTU Technical University of Denmark

FP, FN False Positives / False Negatives
FPN Feature Pyramid Network

GNSS global navigation satellite system
IoU Intersection over Union

LWIR Long Wave InfraRed 8 � 14�m
R-CNN Region-based CNN

ROI Region of Interest
RPN Region Proposal Network

small object occupies an area less than 81 pixels
minibatch number of images inferred before changing weights
TP, TN True Positives / True Negatives
YOLO You Only Look Once CNN
mAP Mean Average Precision

2. OBJECT DETECTION AND CLASSIFICATION

This study uses image-based object detection and clas-
sification to determine which objects are present in the
relevant surroundings of own vessel and their approximate
positions. Data-driven solutions to object classification,
such as deep neural networks, have proved to give robust
and accurate results but these require large sets of an-
notated training data. Techniques that require less or no
prior data also exist but tend to be less generalisable than
a learning-based approach.

The task for navigation includes not only to detect the
presence of a particular object, say a sailing boat, in an
image but also to provide a bounding box around the
object and thereby make a localisation in the image. The
localisation is needed for two reasons. One is to track
an object between consecutive images frames, another is
to estimate approximate bearing and distance using the
geometry properties of the imaging (pinhole model) and
knowing, by calibration or estimation, the optical axis of
the camera. The relative position of other vessels is also
useful for subsequent sensor fusion with data from Radar
and AIS when these are available.

The tracking and sensor fusion parts of the data processing
needs accurate bounding box location information in the
image plane, and needs to know the class to which a
detected object belongs. The focus of this paper is on ob-
tainable quality of this object detection and classification.
We use Convolutional Neural Networks (CNN) to perform
this task.

A CNN consists of several layers of convolutions, and
multiple filters are trained for each layer. After training
the network, the filter output in each layer of the CNN
are features in the input images. These features are very
general in the top most layers of the network, e.g. lines,
corners, but become more specific in the deeper layers of
a CNN.

A fully connected neural network is used to classify the
features generated by the CNN, mapping the features to

a vector that contains the predictions for each class in the
dataset. Fully connected means that the mapping from
input to output of each layer is a linear combination of all
the inputs instead of a convolution.

3. RELATED RESEARCH

Several previous works address object detection, classifi-
cation and tracking in a maritime environment. Surveys
including (Moreira et al., 2014) list the generic approaches
and in particular show results with infrared and visible
light images. Challenges include waves that can cause a
rapid change in the frame of reference (Fefilatyev et al.,
2012), sudden change of illumination and unwanted reflec-
tions from the water (Bloisi et al., 2014), and the possi-
bility of poor weather conditions that reduce the range of
sight. The thermal range 8−14�m, referred to as the LWIR
range, has salient features in avoiding these artifacts and
has the ability to provide clear images without daylight.
LWIR imaging has, however, been quoted to be difficult
to analyse (Prasad et al., 2017).

Other studies have covered images of the marine environ-
ments, seen from a ship or from an aircraft and deep learn-
ing methods were found effective by (Leclerc et al., 2018)
and (Bousetouane and Morris, 2016). Other methods, in
particular edge detection, was emphasized for airborne
use in (Rodin et al., 2018) and (Rodin and Johansen,
2018). While deep learning methods have been applied, a
comparison of performance of CNN networks’ ability to
detect and classify objects at sea has not been reported in
the open literature for LWIR imaging. This has been the
motivation for this research.

4. METHOD

This section describes the dataset used for training and
evaluation, and introduces the three object detection net-
works selected for this study.

4.1 Dataset

A dataset of 21322 LWIR images is used to assess the
neural networks. Images in the dataset are from different
ferries sailing in the southern Funen archipelago with a
camera facing in the direction of travel. The sensor used for
obtaining the images is a Dalsa Calibir 640 GigE, equipped
with a 90◦ lens, and has a resolution of 640 × 480 pixels.

The images were annotated with bounding boxes using
custom software. The annotations were split in to two main
classes, boat and buoy, but the boat class was split into
the sub-classes ferry, merchant vessel, vessel under oars,
sailboat and motorboat. Attributes to sailboat are sails up
and sails down, and general attributes are fishing, not
manoeuverable, and others for which particular traffic rules
at sea are described in COLREGs. This paper addresses
object classification in the two main classes, as our primary
goal is the assessment of the performance of different
neural networks in a general maritime setting. Table 2
shows the cardinality of objects in the dataset.

There is approximately one annotation per image, how-
ever, it should be taken in to account that the annotations



Table 2. Occurrences of classes in the dataset

Total images Boats Buoys

21322 26343 5644

Fig. 1. Annotation Example: Images with annotations
of several types. The boat classes shown here are
consolidated before training of the network.

are not evenly distributed over the dataset. That is, there
are many images containing no annotation, along with
images containing several annotations. An example of an
image with many annotations is shown in Figure 1.

4.2 Network Architectures

We assess three state of the art object detection networks;
RetinaNet, YOLOv3 (You Only Look Once, Version 3)
and Faster R-CNN. In the following we briefly introduce
the architecture of each of the networks and why they are
interesting to investigate for our specific application.

The three networks have been selected, partly because
they show good results on the MS COCO and PASCAL
VOC datasets, see Zhang et al. (2018), but also because
they cover a range of different network types. Faster R-
CNN is a classical two-stage detector which generally
yields the best results, but is quite slow. RetinaNet is a
one-stage detector that uses a novel loss function, that
has shown to increase performance to levels comparable
to the two-stage detectors. YOLOv3 is a very fast one-
stage detector, but it does sacrifice some performance to
achieve these fast inference times.

Common for the networks is that a loss function is need
during training in order to address the models performance
in a given training point. A loss function commonly used
for classification tasks is the cross entropy (1),

CE(p; y) = −
MX
c=1

yo;c log(po;c) , (1)

where M is the number of classes, y is a binary indicator
telling if class c is the correct classification for observation
o, and po;c is the predicted probability that observation o
belongs to class c.

In a binary case, i.e when two classes are used, the cross
entropy is defined as (2),

CE(p; y) =

�
− log(p) if y = 1

− log(1− p) otherwise
(2)

In learning networks, a loss function is used to express
the difference between actual and predicted output, say
� = y − ŷ. One example of a loss function is the mean
square error J =

P
�2i that, however, has a very high

penalty for outliers. For regression tasks, a smooth L1 loss
can be used,

smoothL1(�) =

�
0:5�2 if|�| < 1

|�| − 0:5 otherwise,
. (3)

The smooth L1 loss function in (3) is used in two of the
CNN networks we employ.

RetinaNet RetinaNet is a convolutional network con-
sisting of a backbone network and two subnetworks (Lin
et al., 2018). The backbone network constructs a convolu-
tional feature space from the input image. The backbone
net can be any preferred convolutional network which
means the RetinaNet architecture can accommodate a
backbone CNN in an off-the-shelf fashion. The two sub-
networks perform convolutional object classification and
bounding box regression, respectively. The output of the
backbone is arranged as a Feature Pyramid Network
(FPN) in order to improve multi-scale predictions, see
(Lin et al., 2017). RetinaNet makes use of anchor boxes
to estimate the bounding box of an object, using a set of
predetermined bounding box candidates of various sizes
and aspect ratios. During training, an anchor is assigned
to a ground truth box if intersection-over-union (IoU)
between labelled and observed is above a threshold, here
set to his−object = 0:5. If an anchor has an IoU less
than his−background = 0:4 it is assigned to the background
class. Anchors with an IoU between the two thresholds are
ignored during training. If an anchor has been assigned to
a ground truth, it will be fed to the regression subnetwork
where the smooth L1 loss is used to estimate the center
coordinates of the bounding box together with its height
and width.
Each level of the FPN will have 9 anchors assigned to
each cell of the feature space. The anchors will have a size
corresponding to the scale of the given level. RetinaNet
uses five pyramid levels, with each level having its own
pair of classification and regression subnetworks. The five
pairs are concatenated such that the outputs corresponds
to objects at all levels.

A salient new feature of the RetinaNet was the loss
function, Focal Loss, used for classification, which allows
better classification of background and distant objects in
areas with dense objects or large differences between near
and far away objects.

Rewriting the binary cross entropy (2),

CE(p; y) = CE(pt) = −log(pt);

pt =

�
p if y = 1

1− p otherwise
(4)

after which (Lin et al., 2018, p. 3) defined a Focal Loss,

FL(pt) = −�t(1− pt) log(pt); (5)



where the factor (1 − pt) focuses the loss such that easy
training examples are down-weighted, thus addressing the
imbalance caused by the background class being over-
represented, and �t is a balancing factor.

For this article, RetinaNet was implemented using the
Tensorflow Object Detection API (Huang et al., 2017).
They find anchor sizes and aspect ratios using K-means
clustering to accommodate the abundance of small objects
in a dataset. The backbone network is ResNet-50 by (He
et al., 2016). Training was initialized using weights trained
on the COCO dataset (Lin et al., 2014).

YOLOv3 YOLOv3 is the latest addition to the YOLO-
type networks, see (Redmon and Farhadi, 2018). YOLOv3
is, like RetinaNet, a one-stage detector, meaning that the
input image is put through a network once yielding a
set of predicted bounding boxes and classes. YOLOv3
consists of a backbone network for feature extraction and
a number of sub-networks for bounding box regression
and classification. Unlike RetinaNet, which uses an off-the-
shelf feature extraction network, YOLOv3 uses a custom
network called Darknet-53. Bounding box regression is
done in a FPN-inspired way on three different scales.
For each scale, the feature map is divided into a grid,
on which three anchor boxes are assigned to each grid
cell. The size and aspect ratio of the anchor boxes are
predetermined using K-means on the dataset. Each anchor
box with a ground truth IoU of above 0.5 is assigned to
that ground truth box. Anchors with an overlap less than
0.5 is assigned to the background class. The appropriate
anchor boxes are then sent to the regression network and
classification network. YOLOv3 tries to take the class
imbalance between the background and the ground truth
into account by scaling down the loss by a set factor in case
the current anchor box does not overlap a ground truth.
For training, an open source implementation has been
used (qqwweee, 2018). Training weights are initialized
using weights trained on the COCO dataset (Lin et al.,
2014). Due to the way the feature maps is divided into a
grid, YOLOv3 only accepts square images. The inputs are
therefore reshaped to 640× 640 pixels during training.

Faster R-CNN One of the latest members of the
family of region convolutional neural networks (R-CNN)
is Faster R-CNN by (Ren et al., 2017). It builds upon the
methods developed for the networks R-CNN by (Girshick
et al., 2014) and Fast R-CNN by (Girshick, 2015). They
all predict the contents of regions in images, by outputting
bounding boxes and a prediction score for each candidate
region fed to the networks.

The main difference between the different flavors of R-
CNN are the methods by which interesting regions in
the images are extracted. In R-CNN by (Girshick et al.,
2014), regions of interest (ROI) are extracted using a
selective search algorithm as proposed by (Uijlings et al.,
2013). Each of these candidate regions are then fed to
a CNN, which classifies the contents of these regions.
Furthermore, a regression of the region is predicted to
adjust the bounding box of the object contained in the
candidate region. The selective search algorithm used in
the R-CNN network makes inference times long, and as
such this network is not suited for real-time applications.

Fig. 2. Overview of the structure of the faster R-CNN,
redrawn from (Ren et al., 2017).

Fast R-CNN by (Girshick, 2015) improves upon the
method of generating ROI by reversing the order in which
information is fed to the CNN. By feeding the input image
directly to the CNN and extracting ROI from the output
feature map, the number of inferences through the CNN
can be reduced from 2000 in the original paper to one
per image. The resulting ROI are warped into a fixed
shape in order to pass them through the fully connected
classification and regression layers. Although the selective
search algorithm is still used to determine the best ROI,
inference times are reduced by an order of magnitude in
Fast R-CNN.

The Faster R-CNN, (Ren et al., 2017), aims to further
improve inference time for the R-CNN networks, by de-
termining ROI using a separate neural network, called the
Region Proposal Network (RPN), instead of the selective
search algorithm. This RPN is trained alongside the CNN
used for generating the feature map, and the ROI gener-
ated from it are reshaped using ROI pooling to handle the
fixed input requirement for the fully connected layers. This
further decreases inference times by an order of magnitude,
making the network usable in near real time applications.
An overview of this network is shown in Figure 2.

In the RPN, a binary label can be assigned to each anchor
at each position in the image corresponding to a position
in the feature map. The value of the label is based on the
intersection over union (IoU) with any of the ground truth
boxes present in the image. A positive label is assigned to
any anchor positioned such that its IoU with the ground
truth box is larger than 0.7, i.e IoU > 0:7, and a negative
label is assigned to anchors with 0:0 ≤ IoU < 0:3 with any
ground truth box.

Anchors with an ambiguous IoU in the range [0:3; 0:7] are
not assigned any label, and therefore will not contribute
to the loss of the RPN. The objective function sought to
be minimized in the RPN of the Faster R-CNN is defined
as (Ren et al., 2017),

L(pi; ti) =
1

Ncls

X
i

Lcls(pi; p
∗
i ) + �

1

Nreg

X
i

p∗iLreg(ti; t
∗
i );

(6)



where i is the index of an anchor in a minibatch, pi is
the predicted label of an anchor, p∗i is 1 if the anchor is a
positive sample and 0 if it is a negative sample. ti and t∗i
is a vector containing the coordinates of the predicted box
and ground truth box for positive anchors, respectively.

The two terms in (6) are normalized byNcls, the minibatch
size and Nreg, which is the number of anchor locations.
With available GPU memory, Ncls = 1 in this study. � is
a balancing parameter used to weigh the contributions of
the two terms in the total loss score (6). � was set such
the the two terms contribute equally to the loss in (Ren
et al., 2017).

The loss function used for the classifier term in (6), Lcls
is the log loss, while the regression term, Lreg, uses the
robust loss function defined in (Girshick, 2015):

Lreg =
X

i∈{x;y;w;h}

smoothL1
(ti − t∗i ); (7)

where smoothL1 , is the smooth L1 loss function defined in
(3).

The region proposals generated by RPN are then classified
using the Fast R-CNN network. The training of the two
networks are performed by alternating training, i.e. the
RPN is trained first, and the proposals from this is then
used to train the Fast R-CNN network. The Fast R-CNN
network is then used to initialize the RPN, and so on.

For training the Faster R-CNN used in this paper, we
used the images as is, i.e. as 640 × 480 pixels in size and
we employed transfer learning on the ResNet-50 feature
extractor. This particular version of ResNet-50 uses atrous
convolutions to increase the receptive field of the features
extracted. For anchors, sizes of 8, 16, 32, 64 and 96 pixels
were used along with aspect ratios of 0.5, 1 and 2. A stride
of 8 was chosen for the feature extractor, due to the small
features present in our dataset.

To limit the number of region proposals, non-maximum
suppression is used, such that we only get the 300 most
significant detections from the RPN. Furthermore, only
100 detections are allowed per class per image to reduce
class imbalance. For this article, Faster R-CNN was im-
plemented using Tensorflow Object Detection API (Huang
et al., 2017).

5. RESULTS

Comparing the methods, each network was evaluated on a
common validation set, which was generated by randomly
choosing 10% of the images in our dataset. Evaluation was
done by computing precision and recall (8), and by mean
average precision (9),

precision =
TP

TP + FP

recall =
TP

TP + FN
;

(8)

where TP denotes the sum of true positives in the vali-
dation set, i.e the number of instances correctly detected,
FP the total number of false positives and FN are missed

detections. A detection was deemed correct if a predicted
bounding box and the true bounding box had an IoU above
a given threshold. The predicted class should furthermore
match that of the ground truth.

While evaluating, the classes were split into two depending
on the pixel area. This was done as it was desired to
detect an object as soon as possible when at sea. The area
threshold for when an object is considered as small was set
to 81 pixels. The threshold was determined by inspecting
a histogram showing model detection versus pixel area, an
example of which can be seen in Figure 4.

For method evaluation, it can be relevant to look at the
precision-recall curves. A precision-recall curve is made
by calculating the precision and recall of a model for a
range of confidence and IoU thresholds, yielding a plot
which shows the performance of a given model. A good
model will have curves close to a precision and recall of 1,
meaning that all data points were detected, and correctly
classified. Plotting the precision-recall curve for a different
set of IoU thresholds shows the methods ability to position
the bounding boxes correctly.

Figure 3 show the precision-recall curves of the three
models. It can be seen that Faster R-CNN is able to
obtain a significantly better recall than the other methods
with comparable precision. RetinaNet seems to have the
overall lowest recall, and precision. YOLO lies somewhat
in the middle between the two. These results are further
supported by the results put forward in Table 6. Faster R-
CNN is furthermore better at positioning bounding boxes
relative to the ground truth, since the curves lie closer to
each other across the IoU thresholds.

From the precision-recall curves, the average precision
(AP ) and mean average precision (mAP) can be com-
puted. AP (q) for object class q is obtained by integrat-
ing precision p(r|q) as function of recall r, and mAB by
averaging over Q object classes,

AP (q) =

Z 1

0

p(r|q)dr; mAP =
1

Q

QX
q=1

AP (q): (9)

The mA was calculated for three different IoU thresholds,
i.e. a detection has to have an IoU larger than the threshold
to be counted as a true positive. The mAP results are
presented in Table 3.

Table 3. Mean average precision

F-RCNN R-Net YOLOv3 R-Net-U

mAP@0.25 IoU 0.93 0.96 0.97 0.94

mAP@0.50 IoU 0.81 0.86 0.90 0.90

mAP@0.75 IoU 0.32 0.33 0.29 0.40

In terms of mAP, the performance of the networks are
quite similar at lower IoU thresholds. However, the up-
scaled RetinaNet is better at placing the bounding boxes,
as shown by the higher mAP for the 0.75 IoU threshold.

The performance of the models on the different classes can
be further investigated via their confusion matrices. The
layout of such a matrix is shown in Table 4.



Fig. 3. Average precision-recall curves for RetinaNet, YOLOv3 and Faster R-CNN.

Table 4. Sample confusion matrix

Class
TP FP
FN TN

where TN will be left out, as this metric is ill defined for
the bounding box prediction problem.

The confusion matrices are computed using an IoU thresh-
old of 0:3 and a classification confidence threshold of 0:6. A
relatively low IoU threshold is chosen to favor a high recall,
especially for small objects, as a small positioning error
will result in a large change in IoU due to the relatively
large ratio between the size of a pixel and the size of a
small object.

Table 5 shows the resulting confusion matrices. Inspection
shows that Faster R-CNN performs the best in all cate-
gories with both YOLOv3 and RetinaNet having difficul-
ties with smaller objects, which is evident from Table 6,
when looking at the precision and recall for the two classes.
Average inference time for single images, using a Geforce
GTX 1080 GPU, is summarized in Table 7.

Table 5. Confusion matrices for CNN models

Faster R-CNN RetinaNet YOLOv3

Buoy
204 15 176 3 198 0
16 - 44 - 22 -

Small
329 19 181 2 291 21
67 - 215 - 105 -

Boat
1717 70 1536 100 1496 5
53 - 234 - 274 -

Small
873 40 435 17 801 26
222 - 660 - 294 -

Table 6. Precision (P) and recall (R)

F-RCNN R-Net YOLOv3 R-Net-U

Average P 0.96 0.95 0.98 0.98
Average R 0.90 0.67 0.80 0.86

Buoy P 0.93 0.98 1.00 0.99
Buoy R 0.93 0.80 0.90 0.95

Small buoy P 0.95 0.99 0.93 0.95
Small buoy R 0.83 0.46 0.73 0.76

Boat P 0.96 0.94 1.00 0.99
Boat R 0.97 0.87 0.85 0.92

Small boat P 0.96 0.96 0.97 0.96
Small boat R 0.80 0.40 0.73 0.78

Table 7. Average inference time on GTX 1080 GPU

FR-CNN R-Net YOLOv3 R-Net-U

Inference time 459 ms 40 ms 74 ms 120 ms

Model performance is also illustrated by detection his-
tograms of detected and not detected objects as function
of bounding box area. Figures 4, 5 and 6 present such
histograms for the three networks. It is seen that the
majority of objects in the validation set have a bounding
box area of less than 250 pixels and that most of the
lower recall of RetinaNet comes from missed detections
of objects with an area less than 250 pixels, after which
RetinaNet obtains a better recall than YOLOv3. Faster
R-CNN achieves high recall and precision for both small
and large objects.

Fig. 4. Detection histogram for Faster R-CNN

Fig. 5. Detection histogram for RetinaNet



Fig. 6. Detection histogram for YOLOv3

6. DISCUSSION

The performance of the three networks considered in this
paper was presented above. Of the three, Faster R-CNN
achieved the best overall recall, while YOLOv3 obtained
a slightly better precision than the two other networks.

In an autonomous navigation setting, the most important
metric to consider is the recall, as it is better to detect a
misclassified object, than to miss it altogether. With this in
mind, Faster R-CNN is the best performing network. The
good performance of Faster R-CNN comes at a price. The
average inference time of this network is approximately
5 times that of YOLOv3, and approximately 10 times
that of RetinaNet. This added computation time needs
to be taken into account, as tracking of objects detected
is necessary in an autonomous navigation situation. An
inference time of half a second could hamper tracking of
objects moving in close proximity to own vessel, or at high
velocities relative to own vessel.

Investigation of the poor recall performance of RetinaNet
was conducted. One of the issues identified was poor
performance on small objects, which is due to the down-
sampling of the input images conducted in the ResNet-50
network. The first level in the FPN has a downsampling
factor of 8 (Lin et al., 2017), which results in fewer features
being extracted from small objects. It should therefore be
possible to obtain better results by upsampling the input
images to e.g 1440 × 1080 pixels and thus counteracting
the downsampling of the ResNet-50 network.

A detection histogram for a RetinaNet model trained on
1440×1080 pixel images is presented in figure 7. The model
is trained using the RetinaNet implementation found in
(Gaiser et al., 2018). It is noted that the upscaled images
have resulted in a model with a precision and recall
comparable with that of Faster R-CNN, while keeping a
relatively low average inference time of 120 ms.

The consequence of missing a detection of an object in
a navigation setting could be adverse. The recall perfor-
mance of the networks shows that they cannot be used
for stand-alone detection in an navigation setting. Object
tracking over several frames could significantly improve
the performance.

Fig. 7. Detection histogram for RetinaNet with upscaled
images

7. NAVIGATION PERSPECTIVES

From a navigation perspective, an object requires atten-
tion when it is within a range of 5-10 times ship length and
has a predicted closest point of approach of less than 3-5
times ship length. The distance of attention and distance
of action depend on vessel size and speed.

For vehicles with AIS or a Radar signature, distances are
given. For camera-based imaging, objects can be detected
with a probability described by the recall values. With

object size in image sobjimage, object physical size sobjphys, focal
length flens, sensor pixel size ssensor and distance to an

object, dobjectphys ,

dobjectphys = sobjphys
flens

sobjimagessensor
: (10)

With minimum pixel size for detection sminimage, an object

can be detected at a maximum distance, dobjectdetect ,

dobjectdetect = sobjphys
flens

sminimagessensor
: (11)

The LWIR camera has a pixel size of ssensor = 17�m, 90◦

HFOV and focal length flens = 7:5mm.

According to Figure 7, the upscaled RetinaNet has recall
85% for pixel area 50. This area represents a diagonal of
10 pixels. A leisure boat of dimensions height 20m, width
3:5m and length 10m, has a diagonal of 20:3m if seen
from bow or stern, and 22:6m in athwart ship view. A
leisure boat with such characteristic dimension can hence
be detected at a distance of 850 m. The recall of 85% will
mean that detection will take place in most frames but
there will be frames with no detection. Adequate frame
rate and object tracking will be able to alleviate this.

A vessel on oar with characteristic dimension sobjphys = 1:5m
could first be detected when 65m away from own ship
with the 90◦ lens, which would give too short notice
to navigate safely. Longer focal length, detection using
daylight camera, or use of detection methods other than
CNN technology, e.g. edge detection methods, would cope
with detection in time for such small objects.



8. CONCLUSION

Three convolutional neural network architectures has been
assessed for object detection and classification on long
wave infrared images acquired at sea. It was shown that
detection and classification of objects can be done with
high precision while detecting ∼ 90% of all objects. The off
the shelf CNN technology uses down-scaling, which limits
detection of far away objects. It was found that a good
compromise between detection speed and precision/recall
could be obtained by upscaling the input images.

The present investigation does not argue for only using
LWIR imaging, but was an effort to compare off the shelf
CNN technologies. Colour information is needed as well to
interpret navigation lights at night and to decode colour
codes on buoys and signal flags.
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