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a b s t r a c t

Wastewater treatment plants (WWTPs) are an effective barrier in the protection of human and envi-
ronment health around the world, although WWTPs also are suggested to be selectors and-or reservoirs
of antibiotic resistance genes (ARGs) before entering the environment. The dogma about WWTPs as “ARG
selectors” presumes that biotreatment compartments (e.g., activated sludge; AS) are single densely
populated ecosystems with elevated horizontal gene transfer. However, recent work has suggested
WWTP biotreatment compartments may be different than previously believed relative to antibiotic
resistance (AR) fate, and other process factors, such as bacterial separation and specific waste sources,
may be key to ARGs released to the environment. Here we combined 16S rRNA metagenomic sequencing
and high-throughput qPCR to characterise microbial communities and ARGs across a wastewater
network in Spain that includes both community (i.e., non-clinical urban) and hospital sources. Contrary
to expectations, ARGs found in downstream receiving waters were not dominated by AS biosolids (RAS),
but more resembled raw wastewater sources. In fact, ARGs and microbial communities in liquid-phase
WWTP effluents and RAS were significantly different (BrayeCurtis dissimilarity index ¼ 0.66 ± 0.11),
with a consequential fraction of influent ARGs and organisms passing directly through the WWTP with
limited association with RAS. Instead, ARGs and organisms in the RAS may be more defined by biosolids
separation and biophysical traits, such as flocculation, rather than ARG carriage. This explains why RAS
has significantly lower ARG richness (47 ± 4 ARGs) than liquid-phase effluents (104 ± 5 ARGs), and
downstream water column (135 ± 4 ARGs) and river sediments (120 ± 5 ARGs) (Tukey's test, p < 0.001).
These data suggest RAS and liquid-phase WWTP effluents may reflect two parallel ecosystems with
potentially limited ARG exchange. As such, ARG mitigation in WWTPs should more focus on removing
bacterial hosts from the liquid phase, AR source reduction, and possibly disinfection to reduce ARG re-
leases to the environment.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Antibiotics historically have been among the most effective
classes of therapeutic drugs used in the treatment of infectious
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bacterial disease. However, successful treatment has been
compromised by increasing antibiotic tolerance or resistance (AR)
in bacteria. The ability of microbes to resist some antibiotics is
natural, but AR evolution and spread has accelerated in recent years
due to widespread use of antibiotics in medicine, agriculture, and
aquaculture (Knapp et al., 2010). In terms of spread, domestic
wastewater releases are a key link between human gut and envi-
ronmental microorganisms, influencing the distribution and
abundance of antibiotic resistance genes (ARG) across aquatic
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compartments and microbial communities. This has implications to
human health owing to possible horizontal gene transfer (HGT)
between environmental bacteria and human pathogens, impacting
the potential evolution and selection of new AR phenotypes.

Wastewater treatment plants (WWTPs) are considered as
possible selectors and reservoirs of ARGs since WWTPs have
abundant microbial communities and receive human-associated
microorganisms from hospital and community (non-clinical ur-
ban) sources (Bouki et al., 2013; Yang et al., 2013; Guo et al., 2017;
Karkman et al. 2018). However, dogma about ARG fate in WWTPs
has presumed that biotreatment compartments (e.g., activated
sludge; AS) are single ecosystems with elevated HGT, which recent
work suggests may not be correct. In fact, wastewater networks are
comprised of a series of different ecosystems (including each
WWTP unit operation), although few studies have considered
multiple ecosystems when assessing the fate of ARGs in wastewater
networks (Li et al. 2015). The “spatial ecology” of wastewater net-
works is more diverse than many realise, comprised of at least four
distinct different evolutionary ecosystems that might impact ARG
fate and spread. Examples include the gut and faeces of the original
individual; the sewer line that carries wastewater to the WWTP;
each unit operation within the WWTP; and different receiving
water compartments (e.g., water column and sediments). Each of
these ecosystems has different antibiotic/chemical exposures, mi-
crobial cell densities and diversity, levels of mixing, and meta-
habitat conditions; all of which potentially influence resident
ARGs, their hosts, and HGT within the overall network.

Here we characterised microbiomes and resistomes across an
urban wastewater network in Spain. This network includes com-
munity wastes (non-clinical sources), wastes from two hospitals,
wastewater treatment in an AS WWTP, and final discharge into a
river. Studying a network with two hospitals is important because
antibiotic use is more intensive in hospital settings, especially last
resort antibiotics, selecting for AR bacteria (ARB) over susceptible
counterparts (Stalder et al., 2014; Rodriguez-Mozaz et al. 2015;
Escudero-Onate et al., 2017; Rowe et al. 2017; Szekeres et al. 2017).
Previous studies show hospital-associated wastewaters can contain
Fig. 1. Study area and sampling sites. Label definitions as follows: CM ¼ community wastew
activated sludge, EFF ¼ WWTP liquid effluent, RD ¼ downstream river water column, RU ¼
river upstream.
high levels of resistance to specific antibiotics (Jakobsen et al.,
2008; Yang et al. 2009; Fuentefria et al. 2011; Korzeniewska et al.
2013; Hocquet et al. 2016), although relative masses and volumes
often are low compared with community sources (Li et al., 2015;
Hocquet et al., 2016). Despite this, evidence exists that hospital and
community resistomes differ and might contribute differently to
downstream environmental resistomes (Jakobsen et al. 2008; Rita
et al., 2013; Pic~ao et al., 2013; Korzeniewska et al., 2013;
Rodriguez-Mozaz et al. 2015).

As such, we looked holistically at the spatial distribution, bac-
terial associations, and diversity of ARGs across an entire waste-
water network by comparing microbiomes and resistomes among
compartments. The goal was to clarify which ecosystems and in-
process mechanisms most strongly impact ARGs found in down-
stream receiving waters to develop better-informed WWTP miti-
gation solutions for reducing AR releases to the natural
environment.

2. Material and methods

2.1. Study site and sampling

Sampling was performed in summer 2015 across the waste-
water network with minimal industrial and agricultural contribu-
tions for a city in northwest Spain with an estimated population of
95.800 inhabitants. Summer sampling was selected to assess the
worst-case scenario in terms of dilution of WWTP effluents in
receiving waters. The sampling network is shown as Fig. 1. Samples
were collected from the sewage effluent from two main hospitals
(HP_A and HP_B), community sewage only (CM), and from the
influent (INF), liquid effluent (EFF) and recycled activated sludge
(RAS) of the municipal WWTP as well as water column and sedi-
ments 100 m upstream (RU and SRU) and downstream (RD and
SRD) of the WWTP discharge point.

This WWTP was designed to treat 184,000 population equiva-
lents, which equates to an average daily flow of 54,560 m3. The
receiving river has a width/depth (W/D) ratio of 4.31 and a channel
ater, HP ¼ hospital wastewater (HP_A and HP_B), INF ¼ WWTP influent, RAS ¼ recycled
upstream river water column, SRD ¼ sediment river downstream, and SRU ¼ sediment
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slope of 0.008 m/m. The flow rate during the sampling was esti-
mated at 0.2e0.3 m3/s, which was about half the WWTP flowrate
during the sampling period (0.4e0.5 m3/s). Such dilution is com-
mon in southern Europe in the summer (Keller et al., 2014);
therefore, this network provides data relevant to any location with
limited wastewater dilution, which recent work has found to be
important 7. The city's two main hospitals (with approximately
1300 beds) contribute less than 2% of volumetric flow to the WWTP.
No wastewater treatment is performed at the hospitals. The com-
munity sewage was collected before a pumping station in a
neighbourhood sewer system of 18,830 habitants.

Sampling was performed when no rainfall had occurred within
three days. All sampling included triplicate grab samples per day
(n ¼ 3 per location) collected between 9:00 and 11:00 a.m. on
week-days over three consecutive work-weeks (2 L), except for
river sediment samples, which were collected at the end of the
sample campaign at varied locations (n ¼ 6) approximately 100 m
downstream and upstream of the WWTP discharge point. From
river samples, surface water (5 L) from the top 0.25 m of the water
surface, while sediment (~500 g) was collected from the top 5 cm
layer using a gravity-corer.

Samples were collected in sterile polystyrene bottles, trans-
ported to the laboratory on ice in coolers within 5 h, and tempo-
rarily stored at 4 �C before further analysis. Samples were measured
in situ using hand-held probes (Mettler Toledo™, FG3 FiveGo™,
and Jenway Model 350 pH Meter) to characterise wastewater
conditions, temperature, pH, dissolved oxygen, and conductivity,
(Tables Se1).

2.2. DNA extraction

DNA was extracted from vacuum-filtered biosolids collected
using sterile 0.22-mm membrane disc filters (Millipore, Billerica,
MA, USA) or by pelleting via centrifugation at 12,000 rpm for
30 min. Extraction was performed using the Fast DNA Spin Kit for
Soils (MP Biomedicals, USA) according to the manufacturer's in-
structions. DNA was stored at �20 �C prior to subsequent analysis.
It was not possible to perform the HT-qPCR for ARGs in samples
from the river upstream the WWTP due to low DNA concentration.

2.3. 16S rRNA gene sequencing and processing

To assess microbial community composition and diversity, PCR
amplification of the V4eV5 region of bacterial 16S rRNA genes in
DNA extracts was conducted using fusion primers. The primers
contained a PGM sequencing adaptor, a “GT” spacer, and a unique
12 base pair Golay barcode to allow multiplex analyses (primers
515F: 50- GTGNCAGCMGCCGCGGTAA-30, and 926R: 50-CCGY-
CAATTYMTTTRAGTTT-30). PCR reactions were conducted using the
Phusion Flash High-fidelity PCR master mix (ThermoFisher) with
the following thermocycle program (i) 10 s denaturation at 98 �C,
(ii) 35 cycles of 1 s denaturation at 98 �C, (iii) 5 s annealing at 56 �C,
(iv) 15 s elongation at 72 �C, and (v) 1 min elongation at 72 �C.
Amplicons were quantified using a Qubit dsDNA HS Assay Kit
(Invitrogen) on a Qubit® 2.0 Fluorometer and pooled in equimolar
amounts before further purified using a Pippin Prep System (Life
Technologies) following the manufacturer's protocol.

Subsequent sequencing was performed using an Ion Torrent
Personal Genome Machine (PGM™) System (Life Technology) at
Newcastle University. Sequences were processed in UPARSE-QIIME
pipeline (Pylro et al. 2014, 2016). The FastQ files exported from the
Ion PGM™ system were analysed following the recommendations
of the Brazilian Microbiome Project (BMPOS) (Pylro et al. 2016).
Briefly, the Operational Taxonomic Unit (OTU) table was built using
the UPARSE pipeline (Stalder et al., 2014) in which reads were
truncated at 100 bp and quality filtered using a maximum expected
error of 0.5. Filtered reads were de-replicated and singletons
removed. The sequences were clustered into OTUs at 97% similarity
cut-off, checked for chimeras, and representative sequences were
obtained for each microbial phylotype (Stalder et al. 2014). Taxo-
nomic classification used QIIME (Caporaso et al., 2010) based on the
UCLUST method against the Greengenes 13.8 database (Szekeres
et al., 2017) with a confidence threshold of 80%.

2.4. 16S rRNA data analysis and visualization

All data analysis and visualizations used R through the Rstudio
IDE (http://www.rstudio.com/) (R Core Team, 2006). OTU counts
and associated taxonomic assignments were imported and merged
into phyloseq objects (Mcmurdie and Holmes, 2013). All samples
were rarefied to ensure the same number of reads per sample (i.e.,
8704), which corresponds to the sample with the fewest number of
sequences, resulting in 6434 OTUs.

a-diversity indexes (Richness, Simpson and Shannon), pairwise
ANOVA of diversity measures between sampling sites, Non-metric
multidimensional Scaling (NMDS) ordination, and local contribu-
tions to b-diversity all were calculated using the R package
microbiomeSeq (Ssekagiri et al., 2017). Good coverage was calcu-
lated using the goods function of QsrUtils package. Ranked abun-
dance distribution curves and cluster dendrograms of community
composition dissimilarity (Bray-Curtis, average neighbour clus-
tering) were calculated with the R package vegan (Leclercq and
Wang, 2016). R package DESeq2 was used to identify significant
differences in taxonomic normalized genes at the order level (Love
et al., 2014).

2.5. Biomarker signature analysis (LefSe)

To determine bacterial taxa with significantly different abun-
dance among sampling sites, biomarker analysis was performed
using the linear discriminant analysis (LDA) effect size (LEfSe)
method (Segata et al., 2011) in conjunction with an OTU-
normalized relative abundance matrix. The LEfSe method uses
the Kruskal-Wallis test to identify significant differences and per-
forms an LDA to evaluate the effect of taxa group size. A threshold
score of 2 and a significant a of 0.05 were used to detect differences.

2.6. Evidence of different wastewater network microbial
communities in receiving river microbial communities

SourceTracker, a Bayesian approach for estimating proportions
of a community containing mixed sources (Knights et al., 2011), was
used to estimate the relative contributions of microbial commu-
nities from different “sources” across the wastewater network to
downstream “sinks” (Leclercq et al. 2016; Gou et al., 2018). To
perform this analysis, 16S rRNA sequence data were grouped in
cluster dendrograms of community composition dissimilarity
(Bray-Curtis, average neighbour clustering) based on OTU distri-
butions for characteristic sources. Sources included raw wastewater
(e.g., community and hospital wastes, and WWTP influent)
(n ¼ 12), RAS (n ¼ 3), and the river upstream (n ¼ 3). To check ho-
mogeneity of this source classification, we used “leave-one-out”
source-class prediction for Bayesian models to ensure that all
identified sources looked the same.

The sinks included the liquid effluent from the WWTP, the
downstream water column, and downstream river sediments. OTUs
present in only one sample were removed prior to the analysis.
SourceTracker uses Gibb's sampling (Markov chain Monte Carlo
algorithm) to estimate the source proportions and allocates unex-
plained OTUs in the sinks as from an “unknown source”.

http://www.rstudio.com/
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SourceTracker analysis was carried out at a depth of 8,704, with 100
iterations [default], 10 re-starts [default], and used the auto-tuning
functionality.

2.7. Integrons, total bacteria and coliform quanti�cation

Class 1, 2, and 3 integron gene cassettes were quantified using
quantitative PCR (qPCR) (Tables Se2). Taqman qPCR reactions were
conducted using SsoAdvanced™ Universal Probes Supermix (Bio-
Rad), employing the following thermocycle program: (i) 3 min of
initial denaturation at 95 �C, and 40 cycles of (ii) 5 s denaturation at
95 �C, and (iii) 30 s annealing/extension at 60 �C. In addition, qPCR
also was used to quantify total eubacteria and coliforms using a
SYBR green-based method assay (see Tables Se2). SYBR-green re-
actions were conducted using SsoAdvanced™ Universal SYBR®

Green Supermix (BioRad), employing the following thermocycle
program: (i) 2 min of initial denaturation at 98 �C, and 40 cycles of
(ii) 5 s denaturation at 98 �C, and (iii) 5 s annealing/extension at
60 �C (total bacteria) or 55 �C (total coliforms).

All assays were done in triplicate using the BioRad CFX C1000
System (BioRad, Hercules, CA USA). In order to avoid inhibitor ef-
fects, DNA samples were diluted to a working solution of 5 ng/ul
and an internal control DNA always was used in SYBR-green re-
actions. Standard curves for each set of primers were constructed
using plasmid clones of the target sequences of between 103 and
108 copy numbers, which were used in triplicate and in parallel
with each qPCR run.

2.8. ARGs via high-throughput quantitative PCR (HT-qPCR)

To evaluate the abundance of ARGs in samples, high-throughput
qPCR (HT-qPCR) of ARGs was performed using the SmartChip Real-
time PCR (Wafergen Inc. USA) as described previously (Wang et al.,
2014). A total of 296 primer sets (Tables Se3) were used, including
294 validated primer sets targeting 285 ARGs conferring resistance
to major classes of antibiotics, eight transposases and one 16S rRNA
gene. HT-qPCR data were pre-processed for each primer set and
amplification efficiencies outside an acceptable range (90%e110%)
were discarded. Amplification was confirmed with at least two
positive replicates.

2.9. HT-qPCR and qPCR statistical analysis

Data were processed using the R environment (version 3.4.3,
http://www.r-project.org/), while relative copy number of ARG,
transposase genes, and integrase genes were calculated and
transformed to absolute copy numbers by normalizing to 16S rRNA
gene copy numbers for each sample. Based on the Ribosomal RNA
Database (Rrndb), the average number of 16S rRNA-encoding genes
per bacteria genome (hereinafter referred as “genome”) is esti-
mated as 4.1 (Klappenbach et al., 2001). 16S rRNA-encoding gene
quantities were divided by this value to estimate the number of
genomes, and the normalized copy numbers of ARG or transposases
per genome were calculated.

Statistical analyses and data manipulation were performed us-
ing the R environment with a significant cutoff of a ¼ 0.05.
Normality was studied by the Shapiro-Wilk test; whereas, homo-
scedaticity of the variance was assessed using the Levene's test.
When previous conditions were met, one-way analysis of variance
(ANOVA) was performed to assess statistically significant differ-
ences and, if applicable, subsequent Tukey post-hoc test for pair-
wise comparisons were performed between sampling site pairs.
When datasets failed to meet normality requirements, non-
parametric statistical analysis were applied for all comparisons.
Thus, a Krustall-Wallis test was performed to assess statistically
significant differences and, if applicable, subsequent a Games-
Howell post-hoc test for pairwise comparison between sampling
sites were performed.

2.10. Correlation analysis between ARG subtypes and bacterial
communities

A Mantel test and Procrustes analysis were performed to analyse
the relationships between ARGs and bacterial communities. The
Mantel test was based on Bray-Curtis dissimilarity matrices of the
normalized ARGs and OTUs data, using vegan packages in R. The
threshold for significance was p < 0.05. To perform the Procrustes
analysis, normalized ARGs and OTUs data were used for non-metric
multidimensional scaling (NMDS) analysis (Oksanen, 2015). The
two resulting NMDs were compared using the Procrustes function
and significance tested using 999 permutations.

2.11. Co-occurrence between ARG subtypes and microbial taxa

A correlation matrix was developed by calculating all possible
pairwise Spearman's rank correlations among 139 bacterial orders,
149 ARGs subtypes, 5 transposases, and 3 integrases present in
samples from the study (n ¼ 27). A correlation between two items
was considered statistically robust if the Spearman's correlation
coefficient (r) was �0.8 and the p value was �0.01 (Junker and
Schreiber, 2008). To reduce the chances of obtaining false-
positive results, p values were adjusted with a multiple testing
correction using the BenjaminieHochberg method (1995). The
robust pairwise correlations of ARG subtypes formed co-occurrence
networks. Network analyses were performed in R, and was visu-
alized and explored to identify its topological properties (i.e.,
clustering coefficient, shortest average path length, and modu-
larity) in Gephi (Bastian et al., 2009).

3. Results

3.1. Microbial communities across the wastewater network

Bacterial abundances, expressed as a proportion of 16S rRNA
gene copy number per ng of metagenomic DNA, varied by one order
of magnitude among samples (1.14� 107 to 1.34 � 108 copies per ng
DNA) (Tables Se4), suggesting bacterial cells were a relatively
constant proportion of the total biomass. b-diversity analysis was
used to compare sample diversity among sites. For this analysis, the
dataset was re-sampled to obtain the same number of reads per
sample, which was the sample with the fewest number of se-
quences, resulting in 6434 OTUs in the analysis. The trend of
rarefaction curves suggests sufficient representation of the micro-
bial communities (Figure S-1). Good's coverage estimate showed
high values, all above 93% (Table 1), indicating our selection of 8704
reads provided a reasonable representation of the sampled com-
munities (Tables Se4)

Rarefaction curves for OTUs showed different bacterial com-
munity diversities across sampling sites, which were confirmed
when evaluating a-diversity metrics, including Richness, Shannon
and Simpson indices (Figure S-1, Tables Se4). These indices indicate
that raw wastewater-associated samples have significantly lower
diversity compared with upstream river samples (both water col-
umn and sediment), WWTP liquid effluent, and downstream river
samples (both water column and sediment) (p-value < 0.05).
Therefore, bacterial diversity was greater in non-wastewater sam-
ples, presumably due to more rare taxa, which is supported by rank
abundance distributions (Figure S-2). Additionally, the Bray-Curtis
dissimilarity dendrogram shows the community structure follows
a pattern closely defined by wastewater treatment steps (Figure S-

http://www.r-project.org/
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3), containing three main clusters (cut-off ¼ 0.72). The first one
cluster contains river samples upstream of the WWTP (water col-
umn and sediment). The second cluster contains samples associ-
ated with raw sewage (community and hospital sewage, and
WWTP influent), while the third cluster contains the RAS, WWTP
effluent and the downstream river water and sediment samples.
Distances among different microbial community structures (b-di-
versity) were visualized in a NMDS plot (Fig. 2), where one can see
that WWTP effluents and microbial communities in the river
downstream appear related, although relationships are subtle. For
example, WWTP effluent resembles the downstream water col-
umn, whereas downstream river sediments more closely align with
the RAS.

The composition of bacterial communities also differ among
sites at the phylum level (Figure S-4). Proteobacteria and Bacter-
oidetes are generally prevalent at all sites. Conversely, Firmicutes
dominate both community and hospital wastewaters, but are lower
in the WWTP influent, RAS, and the upstream river. Chloroflexi and
Planctomycetes are particularly evident in river sediments (up-
stream and downstream), and also in the RAS. Clear differences
exist between liquid-phase wastewater (e.g., raw sources and
WWTP effluents) and RAS-associated samples. In fact, the RAS
microbial composition is very different from other samples, except
the downstream river sediments.

3.2. Biomarker signature analysis in water sanitation systems

Characterising microbial communities in each compartment of a
wastewater network (in terms of diversity, evenness, and taxo-
nomic composition) is key to identifying linkages among com-
partments and microbial contributions from outside sources. We
used LEfSE to identify taxa that were differentially present with
each compartment versus taxa that might be present in one
compartment, but potentially transferred from other compart-
ments. LEfSE analysis showed community wastewater was best
characterised by the orders Clostridiales and Erysipelotrichales
(Fig. 3). In contrast, hospital wastewater was better characterised
by the presence of Lactobacilliales and Enterobacteriales, while
Pseudomonadales and Flavobacteriales tend to reflect WWTP
influent. RAS was defined by Spingobacteriales, Caldilineales, and
Fig. 2. Non-metric multidimensional Scaling (NMDS) of a BrayeCurtis resemblance ma
CM ¼ community wastewater, HP ¼ hospital wastewater (HP_A and HP_B), INF ¼ WWTP in
river water column, RU ¼ upstream river water column, SRD ¼ sediment river downstream
Actinomycetales (Fig. 3). As such, each compartment has a selected
“characteristic” orders to help delineate the relative influence of
different source communities on downstream sink communities.

3.3. Effect of wastewater network microbial communities on
microbial communities in the receiving river

SourceTracker analysis was performed to explore the fate of
each source, including raw wastewater (i.e., hospital, community,
and WWTP influent), RAS, and upstream river water (Fig. 4,
Tables Se5). Each source was quite distinct based on their Bray-
Curtis dissimilarity index (Figure S-3), showing the leave-one-out
source class prediction provided a reasonable reflection of sour-
ces (Fig. 4, Tables Se5). This allows us to proportionate source in-
fluences in sinks. For example, sequences in the liquid WWTP
effluent microbial community were mainly a mixture of raw
wastewater (42% ± 0.41) and RAS bacteria (33% ± 0.34). Similarly,
the downstream water column was a combination of raw waste-
water bacteria (30% ± 0.5) and RAS (49% ± 0.71). In contrast,
downstream sediment sequences were different, being dominated
by RAS (51% ± 0.54) and upstream river sediment bacteria
(16% ± 0.59), showing less influence of raw sewage (<0.4%).
Downstream sediments were dominated by RAS bacteria, whereas
the water column was more influenced by WWTP influent bacteria.
Finally, upstream communities (water column and sediment) were
largely substituted downstream by bacteria from the WWTP (Fig. 4,
Tables Se5).

The Venn diagram (Figure S-5) confirms that raw WWTP
influent and RAS have very different OTU compositions and that
WWTP effluent is a combination of both, including bacterial species
from the WWTP influent that do not appear to establish themselves
in RAS. The Figure S-6 summarises relative abundances of effluent
taxa associated with the influent (Figure Se6B), RAS (Figure Se6C),
and persistent taxa from both (Figure Se6A). Statistically significant
differential abundances in microbial taxa (order level) exist be-
tween WWTP influent and RAS (Figure S-7), which are especially
evident when one compares the WWTP effluents with influents
(Figure Se7B) and RAS (Figure Se7C), respectively. In summary,
RAS contributes significantly to the presence of Acidimicrobiales,
Actinomycetales, Caulobacteriales, Cytophagales, Myxococcales,
trix among 30 samples obtained from wastewater network. Labels are as follows:
fluent, RAS ¼ return activated sludge, EFF ¼ WWTP liquid effluent, RD ¼ downstream

, and SRU ¼ sediment river upstream.



Fig. 3. A linear discriminant analysis effect size (LEfSe) method identifies the significantly different abundant taxa of bacteria in all the sampling sites. The taxa with significantly
different abundances among sites are represented by coloured dots, and from the center outward, they represent the kingdom, phylum, class, and order. The coloured shadows
represent trends of the significantly differed taxa. Each coloured dot has an effect size linear discriminant analysis (LDA) score. Only taxa meeting an LDA significance threshold of
>2 are shown. Samples labelled as follows: CM ¼ community wastewater, HP ¼ hospital wastewater (HP_A and HP_B), INF ¼ WWTP influent, RAS ¼ return activated sludge,
EFF ¼ WWTP liquid effluent, RD ¼ downstream river water column, RU ¼ upstream river water column, SRD ¼ sediment river downstream, and SRU ¼ sediment river upstream.
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PHOS-HD20, Rhizobiales, Saprospirales, Sphingobacteriales, and
Spingomonadales. Conversely, WWTP influent more contributes
to the presence of Aeromonadales, Bacterioidales, Campilobacter-
iales, Clostridiales, Desulfovibrionales, Enterobacteriales, and
Neisseriales.

On a network level, significantly higher relative abundances of
Enterobacteriales were found in hospital wastewaters, WWTP
influent, and liquid-phase WWTP effluents (compared with the
RAS); a conclusion supported by qPCR data on targeted coliform
bacteria (Figure S-8). Both raw hospital and community wastewa-
ters have significantly higher relative coliform levels than the RAS,
implying coliforms less readily colonise the RAS (see Figure Se6B).
This has been suggested before, which is explained by the fact that
such organisms tend not to intrinsically flocculate (Huang et al.,
2018). In contrast, coliform levels in liquid WWTP effluent are
proportionally higher than in RAS. This is further evidence that a
sub-community of Enterobacteriales passes directly through the
WWTP into the downstream water column.

3.4. Richness and relative abundance of ARGs and MGEs in
wastewater networks and receiving rivers

A total of 255 ARGs and eight transposase genes were quantified
by HT-qPCR, and three integrase genes were quantified by qPCR
across all sites. Detected ARGs encode resistance to eight classes of
antibiotics, with aminoglycosides, b-lactam, multidrug-efflux
pumps, tetracycline, and MLSB resistance being the most
frequently encountered types (Fig. 5). Some observations are
possible. First, liquid-phase WWTP effluents significantly contrib-
uted to the number of detected ARGs in the river, with 122 ARGs
found in downstream sediments (significantly greater than the 80
ARGs found in upstream sediments; p-value < 0.01). Additionally,
the highest number of ARGs were found in the hospital wastewa-
ters (both HP_A and HP_B, mean ¼ 169 ± 8); this was higher than
community wastewater (n ¼ 146 ± 11) and significantly higher than
ARGs in the WWTP influent (n ¼ 124 ± 21) (p-value < 0.01)
(Tables Se6). The lowest number of ARGs were found in the RAS,
which contains only 47 ± 4 ARGs; much less than 104 ± 5 ARGs in
the WWTP effluent (see Fig. 5).

Absolute ARG concentrations detected in all samples were high,
ranging from 6.16 � 108 (WWTP effluent) to 8.63 � 1010 (RAS)
copies per ml or gram (Figure S-9). The same was seen for trans-
poson genes with concentrations ranging from 1.01 � 107 (WWTP
effluent) to 1.16 � 109 (RAS) copies per gram or ml; and integrase
genes ranging from 7.37 � 106 (WWTP effluent) to 2.17 � 109 (RAS)
copies per gram or ml. After RAS, the downstream river sediments
had the highest concentration of ARGs (5.40 � 1010 copies per
gram), transposon genes (8.75 � 108 copies per gram), and inte-
grase genes (1.10 � 109 copies per gram). These were significantly
higher (p-value < 0.01) than found in the upstream sediments
(6.35 � 109 copies of ARGs per g, 7.12 � 107 copies of transposases
per g, and 5.96 � 108 copies of integrases per g). The highest ARG
abundances were found in hospital wastewaters (HP_A as
3.12 � 1010 and HP_B as 2.23 � 1010 copies of ARG per ml). These



Fig. 4. Relative contribution of river upstream sediment and water column, sewage (hospital and community sewage, and influent), RAS, river upstream (water column and
sediment), and unknown sources to the wastewater treatment plant effluent and river downstream (water columns and sediment) estimated using SourceTracker analysis. Where
CM ¼ community wastewater, HP ¼ hospital wastewater (HP_A and HP_B), INF ¼ WWTP influent, RAS ¼ return activated sludge, EFF ¼ WWTP liquid effluent, RD ¼ downstream
river water column, RU ¼ upstream river water column, SRD ¼ sediment river downstream, and SRU ¼ sediment river upstream.

Fig. 5. Number of antibiotic resistance genes (ARGs) detected in the sampling sites. Resistance genes are classified based on the antibiotics to which they confer resistance. They
include aminoglycosides, b-lactams, FCA (fluoroquinolone, quinolone, florfenicol, chloramphenicol and amphenicol resistance genes), MLSB (macrolide-lincosamide-streptogramin
B), other/efflux (multidrug-efflux pumps or others), sulphonamides; tetracyclines; and vancomycin. The statistical analyses, comparing the number of resistance genes in each site
were performed using one-way analysis of variance (ANOVA) and post-hoc Tukey test.
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levels are greater than associated 16S rRNA concentrations, sug-
gesting that “hospital bacteria” may carry multiple ARGs per
genome (more than from community wastewaters).

ARGs conferring resistance to aminoglycosides were dominant
in all samples, increasing in relative abundance from the WWTP
influent (0.383 ± 0.042 ARGs/genome) to RAS (0.536 ± 0.365 ARGs/
genome). The same pattern is true for genes conferring resistance
to FCA, sulphonamides, and vancomycin, although only one gene
was detected in the latter two cases (Figure S-10). ARGs conferring
resistance to b-lactam antibiotics were the second most abundant
type per genome in raw wastewater sources (hospital and com-
munity), ranging from 2.649 ± 0.349 ARGs/genome in hospital
wastes (HP_A and HP_B) to 0.199 ± 0.044 ARGs/genome in com-
munity wastes. By contrast, multidrug-efflux pumps were the
second most common mechanism, ranging from 0.273 ± 0.122
ARGs/genome in WWTP effluents to only 0.037 ± 0.001 ARGs/
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genome in upstream sediments. Less abundant gene classes were
for FCA, ranging from 0.177 ± 0.027 ARGs/genome in hospital
wastes (HP_A and HP_B) to 0.009 ± 0.008 ARGs/genome in the
WWTP effluent. Finally, vancomycin resistance genes were
0.037 ± 0.006 ARGs/genome in hospital wastes (HP_A and HP_B),
but were less than 0.001 ARGs/genome in WWTP influent.

Although the WWTP itself significantly reduces the concentra-
tions of most ARG groups (between influent and effluent;
Tables Se7), actual ARG richness and the number of resistance
genes per genome did not change significantly between the WWTP
influent and effluent. Relative to river sediment resistomes, a sig-
nificant increase in ARG concentrations were seen in all groups
upstream and downstream of the WWTP, except for FCA and van-
comycin. The richness of ARGs conferring resistance to amino-
glycosides, b-lactams, MLSB, and tetracycline all increased
significantly (p < 0.01) (Tables Se8). Further, the average number of
ARGs per genome in downstream sediments also increased
significantly for aminoglycosides, b-lactams, MLSB, multidrug
efflux systems, tetracyclines, and also the number of transposase
and integrase genes per genome.

Overall, ARGs, transposase, and integrase genes per genome
(Tables Se9) were highest in the hospital wastewaters. For example,
13.9 ARGs per genome were detected in hospital wastewaters,
which is much higher than community wastewater (1.6 ARGs/
genome), RAS (1.0 ARGs/genome), WWTP liquid effluent (0.8 ARGs/
genome), upstream river sediments (0.1 ARGs/genome), down-
stream river sediments (1.4 ARGs/genome), and the downstream
water column (0.6 ARGs/genome). In this network, hospital waste-
water was only 1.65e1.84% of the total flow volume to the WWTP;
however, based on mass balances (assuming 9.39 log of genomes
per ml in hospital wastes and 9.28 log of genomes per ml in com-
munity wastes), hospital wastes contribute from 15.8 to 17.3% of
ARGs to the WWTP. Finally, a Venn diagram overlaying ARGs present
in hospital versus community sources and the receiving waters
show 15 unique ARGs are attributable to hospitals, whereas only six
ARGs are attributable to community wastes (Figure S-11).

Using two-dimensional hierarchical clustering in conjunction
with an ARG heatmap of relative abundances (Figure S-12), ARG co-
occurrence patterns were delineated across network compart-
ments. Sample types split into general clusters, with hospital
wastewater samples clustering together in terms of ARGs, whereas
community wastewater more clusters with WWTP influent and
effluent, and the downstream water column. In contrast, ARGs in
upstream river sediments and the RAS cluster very different from
all other samples. Clustering suggests ARGs found in the RAS
minimally relate to WWTP influents and downstream water col-
umn samples.

3.5. Relationships between bacterial communities and ARGs

The Mantel test showed that bacterial community compositions
were significantly correlated with ARGs compositions according to
the Bray-Curtis dissimilarity index (R ¼ 0.338, P ¼ 0.003). Procrus-
tes analysis further supports significant correlations between
prevalent ARGs and bacterial composition (16S rRNA gene OTUs
data) (Bray�Curtis dissimilarity index; sum of squares
M12 ¼ 0.344, r ¼ 0.810, P ¼ 0.001, 999 permutations) (Figure S-13).
These results confirm resistomes generally link with microbial
communities. Here, the WWTP influent, liquid-effluent and
downstream water column resistomes were similar, whereas RAS
was very different.

3.6. Co-occurrence patterns among ARGs subtypes

Co-correlation networks are well suited to detecting general
patterns in highly populated taxonomic groups. Co-occurrence
patterns between ARGs and microbial taxa (order-level) were
investigated using a network analysis approach (Figure S-14). We
hypothesized that non-random co-occurrence patterns between
ARGs and microbial taxa would suggest possible host information
of ARGs if the ARGs and co-existing microbial taxa display strong
and significantly positive correlations (Spearman's R2 0.8, P < 0.01).
In data here, the co-correlation network consisted of 203 nodes
(ARG subtypes) and 1593 edges with an average degree or node
connectivity of 15.695. The average network distance between all
pairs of nodes (average path length) was 2.771 edges with a
network diameter of 8 edges. As shown in Figure S-14, network
analysis produces two independent groups. The first group
(Figure Se14A) includes all ARGs, transposase genes, and integrase
genes, and associates with only 13 taxa. In contrast, the second
group contains taxa only and no AMR-related elements
(Figure Se14B).

Both groups can be visualized as independent networks (see
Fig. 6), with the first group as probable ARG hosts with character-
istic bacteria from wastewater sources (community, hospital and
WWTP influent), including Enterobacteriales, Pseudomonadales,
and Clostridiales (Figure Se6A). The second group, which does not
correlate with ARGs, transposase genes, or integrase genes
(Figure S-15), is primarily composed of RAS-enriched taxa
(Figure Se6A), such as Actinomycetales and Spingomonadales. This
is further corroboration that the RAS microbial community does not
strongly associate with ARGs in WWTP effluents.

4. Discussion

This study elucidated the spatial ecology of ARGs within a
Southern European wastewater network that includes both hos-
pital and community wastewater sources. The wastewater network
was in Spain, sampled during “worst-case scenario” conditions
when WWTP effluent dilution rates in the river were very low; a
common scenario in drier climates.

Data show this wastewater network can be divided into three
microbial source communities (raw wastewater, RAS, and the river
upstream), which differentially explain where how and why ARGs
spread across the larger network (Baquero et al., 2008). These
communities relate to three evolutionary ecosystems with different
habitat and selection factors. The first ecosystem and its microbial
community are the raw wastewater sources (hospital, community,
and WWTP influent). Hospital and community wastewaters are
microbiologically closer to raw waste sources (faecal matter)
whereas microbial communities change as the wastewater flows
down the sewer line. This change is characterised by a shift from
obligate anaerobes (presumably from source faeces) to facultative
anaerobes (Shanks et al. 2013; Bengtsson-Palme et al. 2015).

The second ecosystem is the core WWTP biological treatment
community (i.e., RAS), which despite continuous inputs of waste-
water, has its own unique microbial composition that significantly
differs from the wastewater sources and the liquid-phase WWTP
effluent. The RAS community has high ARG abundances, but very
low ARG richness and does not resemble wastewater sources in
terms of ARGs or bacterial composition. Based on this and other
data, we suspect ARGs found in RAS are largely coincidental
because the RAS community is primarily being selected by WWTP
operating conditions, such as biosolids settling within the sec-
ondary clarifier. This conclusion is consistent with Cai et al. (2014)
and Huang et al. (2018) who showed microbial communities in
activated sludge were less affected by the WWTP influent bacteria,
suggesting large fractions of WWTP influent bacteria disappear or
decrease significantly in the RAS compared with the influent (Tang
et al., 2016). In total, these data suggest that free-living



Fig. 6. Network analysis revealing co-occurrence patterns among ARG subtypes, taxa (order level), transposons and integrons. A connection represents a strong (Spearman's
correlation coefficient p > 0.8) and significant (P-value > 0.01) correlation. The size of each node is proportional to the number of connections, that is, the degree.
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microorganisms, which do not aggregate in flocs or do not readily
settle in the clarifier, appear to pass through the WWTP. It further
suggests RAS and the liquid-phase (and their microorganisms) may
represent two ecosystems, which is key to explaining ARG fate
within and beyond the biotreatment compartment. Most studies on
AR studies presume WWTPs, especially RAS, are a place of active
ARG exchange (e.g., Ma et al., 2011; Burch et al., 2013), which data
here suggest may not be the case.

The third ecosystem and its microbial community associated
with the upstream river (water column and sediment), which
clusters away from the other groups. This community clearly
changes upon reception of the WWTP effluents, becoming a
combination of microorganisms from the raw wastewater, RAS, and
upstream community in the downstream water column and sedi-
ments. Although wastewater treatment reduces the bacterial load
by several orders of magnitude, large volumes of treated waste-
water inputs increase the abundance and richness of ARGs in the
river sediment downstream compared to upstream of WWTP dis-
charges. These results are consistent with those of other studies
(Pruden et al. 2012; Marti et al. 2013; Karkman et al., 2016; Brown
et al., 2019).

Overall, findings here are consistent with Munck et al. (2015)
who showed the core resistome of biological wastewater treat-
ment units is different from other parts of urban water ecosystems
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and not necessarily a “hot spot” for gene transfer. Specifically, we
show human-waste associated ARGs often pass directly through
WWTPs without inclusion into the RAS. Therefore, although bio-
logical treatment units and RAS are important to carbon and ni-
trogen removal, other factors are more important to the fate of
ARGs within the same WWTPs. Data suggest the type and perfor-
mance of biosolids separation units may be key to downstream
resistomes. The non-floc phase has greater ARG richness and bac-
teria with more ARGs/genome, suggesting that removing unsettl-
able biosolids may be more critical for reducing ARG releases to the
environment. If this is true, greater emphasis is needed in under-
standing and improving biosolids separation in WWTPs. Implicitly,
membrane bioreactors may be better from removing ARGs, which
reports have suggested (Lea et al., 2018; Zhu et al. 2018).

5. Conclusions

This study shows that understanding the spatial ecology of a
wastewater network is critical to explaining what impacts ARGs
released from WWTPs. Specifically, RAS and the associated liquid
phase in biotreatment compartments appear to be two parallel
ecosystems. As such, ARG fate and releases from a WWTP may be
more associated with bacterial biophysical traits, such as ten-
dencies towards flocculation and settling. It also shows that source
wastewater ARGs may be more important to WWTP effluents than
believed, albeit in subtle ways. As an example, greater ARG richness
and higher levels of ARGs/genome prevail in hospital sources might
disproportionately influence ARGs entering the WWTP and, in turn,
organisms passing through the WWTP in liquid effluents to the
receiving water. This problem may be particularly acute in southern
Europe in the summer or anywhere else where receiving water
dilution levels are low.

Taken together, this work shows less studied factors, such as the
spatial ecology of whole networks and the local ecology of unit
operations, may be critical to improving ARG mitigation by
WWTPs. Based the network studied, future focus should be on AR
source reduction, improving biosolids separation, and possibly
disinfection to reduce ARG releases in the wider environment.
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