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Fig 2. Uses of the Mtase selection system. (A) ALE-driven workflow. (B) In vivo enzymatic comparison of wild-type Pnmt
and variant shown in time course. n = 4, and error bars indicate SD. (C) The melatonin pathway. (D) In vivo enzymatic activity
of Asmt and Aanat variants after 6 h cell growth. See S2 Fig for details. n = 3, and error bars indicate SD. (E) Comt-dependent
growth shown using an evolved isolate bearing RpoC (A328P). μ indicates the growth rate. Inhibitor titration curves of the
same strain in the presence or absence of homocysteine. n = 4, and error bars are SD. Underlying data can be found in S1 Data.
Aanat, aralkylamine N-acetyltransferase; AcHT, acetylserotonin; AcCoA, acetyl-CoA; ALE, adaptive laboratory evolution;
Asmt, acetylserotonine O-methyltransferase; Comt, catechol O-methyltransferase; Ddc, aromatic-amino-acid decarboxylase;
Mtase, methyltransferase; NGS, next-generation sequencing; OCT, octopamine; OD, optical density; PCA, protocatechuic acid;
Pnmt, phenylethanolamine N-methyltransferase; RpoC, RNA polymerase subunit beta; SAH, S-adenosylhomocysteine; SAM,
S-adenosylmethionine; SD, standard deviation; SYN, synephrine; VIII, vanillic acid; 5HT, serotonin; 5HTP,
5-hydroxytryptophan.

https://doi.org/10.1371/journal.pbio.2007050.g002
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levels of ddc expression from a plasmid caused genetic instability, and mutations in cfa could
be seen in non-melatonin–producing cells, affirming its role as an unwanted sink for SAM in
E. coli. Upon incorporating Asmt (A258E), a single copy of ddc, and cfa deletion in the back-
ground strain, Aanat was further evolved in the next ALE, and the D63G mutation was identi-
fied, leading to approximately 2-fold activity improvement (Fig 2D). These results
demonstrated the usefulness of this growth selection system for directed evolution of enzymes
or metabolic pathways when linked to a methylation reaction.

We next demonstrate the use of our system for drug discovery. SAM-dependent Mtases par-
ticipate in many important cellular functions and are targeted by a number of drug development
programs (such as DNA or histone Mtase inhibitors) [6]. We applied our selection system on
catechol O-methyltransferase (Comt), a known drug target for treating Parkinson’s disease [5].
Cells bearing human Comt were evolved to grow at high rates using ALE (Fig 2E). All isolates
were growth-coupled to Comt activity. Resequencing results showed the comt gene did not
acquire any mutations, while many isolates accumulated mutations on RpoC (such as A328P,
E1146A, or E1146G), a subunit of E. coli RNA polymerase, suggesting a host factor effect. The
suitability of using evolved cells to screen Comt inhibitors by growth was evaluated next by
determining Z-factor in a 96-well format [10]. The Z-prime value was calculated to be between
0.87 to 0.97 when cells were grown for 3 h or more, indicating a high-throughput-screening
(HTS)–compatible assay with large separation (Fig 2E and S1 Table). We then tested one evolved
isolate with two known Comt inhibitors: entacapone and tolcapone, respectively. Both drugs
reduced Comt-dependent cell growth at concentrations as low as 200 nM, with a slightly higher
potency observed for tolcapone (Fig 2E). Both inhibitors were highly specific to Comt and
showed no observable adverse effects on other cellular proteins (such as heterologous Cys3 and
Cys4 or the essential E. coli proteins) when homocysteine was additionally supplemented, imply-
ing a general suitability of our selection system for in vivo Comt inhibitor screening (Fig 2E).

Lastly, we implemented our design in budding yeast S. cerevisiae. S. cerevisiae is an industri-
ally important production host with growing interest for biobased production of value-added
methylated products [11]. It is also a well-studied eukaryotic model organism expressing
diverse cellular Mtases [12]. In contrast to E. coli, yeast is capable of synthesizing cysteine
through reverse transsulfuration from homocysteine because of the natural appearance of the
CYS3 and CYS4 genes (Fig 3A) [13]. Therefore, blockage of homocysteine biosynthesis from
aspartate is required to enable the selection, and this was achieved by deleting the genes encod-
ing homoserine O-acetyltransferase (MET2) and O-acetylhomoserine sulfhydrylase (MET17).
Additional gene deletion of phosphatidylethanolamine methyltransferase (CHO2) and phos-
pholipid methyltransferase (OPI3) required for phosphatidylcholine biosynthesis was per-
formed to remove potential competing native Mtases for SAM [14]. In this quadruple knock-
out strain, the heterologous caffeine synthase I gene (CCS1), encoding an N-Mtase from Coffea
arabica acting on theobromine to synthesize caffeine, was introduced. The presence of Ccs1
conferred growth advantage when exogenous theobromine was supplemented compared to
nonsupplemented cells, affirming the applicability of the design in yeast (Fig 3B). Control cells
without Ccs1 expression showed similar growth regardless of theobromine supplementation
(Fig 3C). Acknowledging the large number of native Mtases in yeast [12], this phenotype
might be the result of the activity of remaining native Mtases for homocysteine synthesis
required for growth.

Discussion
In summary, we have designed and validated a methylation-dependent growth selection sys-
tem for Mtases. Not only did this selection system lead to the discovery of causal mutations
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Trimmomatic tool (v0.32-v0.35) was used for quality trimming of raw sequencing data
with "CROP:145 HEADCROP:15 SLIDINGWINDOW:4:15 MINLEN:30" parameters [26].
Breseq (v0.27.1) was employed for variant calling on processed sequencing data with "-j 4 -b
20" parameters [27]. E. coli BW25113 genome sequence with NCBI accession CP009273 was
used as reference along with other relevant parts and plasmids.

Compound analysis
All compounds were purchased from Sigma Aldrich. PCA and its methylated product vanillic
acid (VIII) were quantified using a Dionex 3000 HPLC system (Dionex, Sunnyvale, CA, USA)
equipped with a Cortecs UPLC T3 column from Waters (Milford, MA, USA) and a guard col-
umn from Phenomenex (Torrance, CA, USA). The column temperature was set to 30˚C, and
the mobile phase consisted of a 0.1% formic acid and acetonitrile. Runtime was 11 min, includ-
ing 4.2 min separation without acetonitrile, 1 min washing with 75% acetonitrile, and an addi-
tional 4.5 min run without acetonitrile. The flow rate was constant at 0.3 ml/min, and the
injection volume was 1 μl. Both compounds were detected by UV at wavelengths 210, 240, and
300 nm as well as a 3D UV scan. HPLC data were processed using Chromeleon 7.1.3 software
(Thermo Fisher Scientific, Waltham, MA, USA), and compound concentrations were calcu-
lated using calibration curves.

5HTP, serotonin (HT), acetylserotonin (AcHT), and melatonin were quantified using a
Dionex 3000 HPLC system equipped with a Zorbax Eclipse Plus C18 column (Agilent Tech-
nologies, Santa Clara, CA, USA) and a guard column from Phenomenex. To achieve separa-
tion, the column was heated to 30˚C, and the mobile phase consisted of a 0.05% acetate and a
variable amount of acetonitrile. Runtime was 12 min, including 10 min of separation, whereas
acetonitrile was reduced from 95% to 38.7% in 9.4 min. After holding 0.6 min, acetonitrile
concentration was returned to 95% in 1 min and was held till the end of the run. The flow rate
was set to 1 ml/min, and the injection volume was 1 μl. Elution of the compounds was detected
by UV at wavelengths 210 nm, 240 nm, 280 nm, and 300 nm as well as a 3D UV scan. HPLC
data were processed using Chromeleon 7.1.3 software (Thermo Fisher Scientific), and com-
pound concentrations were calculated using calibration curves.

OCT was quantified using a Dionex 3000 HPLC system equipped with a Cortecs UPLC T3
column from Waters and a guard column from Phenomenex. The column temperature was
set to 30˚C, and the mobile phase consisted of 0.1% formic acid and acetonitrile. Runtime was
9 min, including 2.5 min separation without acetonitrile, 0.5 min washing with 70% acetoni-
trile, and an additional 5.5-min run without acetonitrile. The flow rate was constant at 0.3 ml/
min, and the injection volume was 1 μl. OCT was detected by UV at wavelengths 210, 240, and
300 nm as well as a 3D UV scan. SYN was detected by LC-MS (Fusion, Thermo Fisher Scien-
tific) in the positive full-scan mode using the same separation profile as OCT quantification.
SYN was detected as [M + H]+ m/z 168.10191 with a mass accuracy of 2.2 ppm. Data were pro-
cessed using Chromeleon 7.1.3 and X-calibur 4.1 from Thermo Fisher Scientific, and com-
pound concentrations were calculated using calibration curves.

Growth measurements
Growth of E. coli was measured using a Duetz 96-well low well system (Enzyscreen, Heem-
stede, The Netherlands) coupled to a humidified Innova 44 shaker (5 cm orbit) (New Bruns-
wick Scientific, Edison, NJ, USA) at 37˚C and 300 rpm. Seed cells were grown in 400 μl LB in
the presence of appropriate antibiotics for 4–5 h in 96-well deep well plates. When transferred
to M9, 10 μl of cells were added to 400 μl of M9 with 25 mg/L cysteine and antibiotics. After
overnight growth, cells were added to 150 μl of fresh M9 with 50 mg/L of methionine and 50
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mg/L methylation substrates to approximately 4% in a 96-well low well plate. Changes in opti-
cal density at 600 nm (OD600) were recorded using a SynergyMx microplate reader (BioTek
Instruments, Winooski, VT, USA). Growth rates were calculated from an average of four inde-
pendent biological replicates using KaleidaGraph 4.1.3.

Six biological replicates of S. cerevisiae SCAH134 and SCAH138 were inoculated from seed
cultures to similar ODs for sulfur amino acid starvation in Delft medium supplemented with
histidine, uracil, and choline chloride and incubated for approximately 24 h. The seed cultures
were grown in yeast synthetic complete medium without leucine, supplemented with choline
chloride, for approximately 25 h. Both replicate seed cultures and starvation cultures were cul-
tured in a total volume of 500 μl in 96-deep well plates at 30˚C/300 rpm. Upon completion of
starvation, cells were transferred to Delft medium supplemented with histidine, uracil, choline
chloride, 1 mM L-methionine, and with/without 1 mM theobromine (Sigma Aldrich) to simi-
lar ODs and to a final volume of 150 μl in a flat-bottomed microtiterplate. Two technical repli-
cates were inoculated for each of the six biological replicates. Growth was recorded in a
microtiterplate reader (ELx808 Absorbance Reader, BioTek Instruments) with continuous
shaking at strong setting, at 30˚C, and with recording of absorbance at 630 nm every 30 min.
The cultures had incubated in the plate reader 30 min prior to the first reading at time 0 h.
Growth curves were plotted using mean absorbance of the replicates for 30 h. Blank media val-
ues were not subtracted.

Growth inhibition assay using entacapone and tolcapone
HL1818 was used to test the inhibition effect of entacapone and tolcapone. Cells were prepared
for growth measurement as described above. The test growth medium was M9 with 50 mg/L
PCA, 50 mg/L methionine, 1% DMSO, and various amount of inhibitors. The stock concen-
tration of entacapone and tolcapone was 20 g/L dissolved in DMSO. To the positive controls,
50 mg/L homocysteine was additionally included so that effects of the drugs on E. coli cells
(such as those other than Comt) could be determined. A drug concentration response curve
was plotted using average OD600 after 6 h growth from three independent biological repli-
cates. The EC50 values were calculated using OriginPro 2018b (version b9.5.5.409).

Characterizations of Pnmt activity in vivo
Measurements of SYN production were performed using a Duetz 96-well deep well system
(Enzyscreen) coupled to an Innova 44 shaker (5 cm orbit) (New Brunswick Scientific) at 37˚C
and 300 rpm. HL1815 and HL1816 were used to measure SYN production (S1 Table). Seed
cells were grown in LB in the presence of chloramphenicol for 4–5 h and thereafter grew in
M9 overnight. Fresh M9 containing 200 mg/L OCT was inoculated with seed culture to 4%.
These cells were transferred to a 96-well deep well plate, and each well contained 400 μl. 200 μl
samples were withdrawn periodically for exometabolites analysis, while the remaining 200 μl
cells were used to determine OD values using a SynergyMx microplate reader (BioTek). In
vivo enzyme activity was averaged from four independent biological measurements normal-
ized to dried cell weight. The conversion factor from OD to dried cell weight is 1 (i.e., 1
OD = 1 g/L) for our setup. It was observed that Pnmt activity was biomass dependent.

Characterizations of Asmt and Aanat activity in vivo
A Duetz 24-well deep well system (Enzyscreen) coupled to an Innova 44 shaker (5 cm orbit)
(New Brunswick Scientific) was used. Physiological Asmt activity was determined by growing
HMP231, HMP416, HMP416, HMP417, and HMP418 in 2 ml M9 supplemented with 100
mg/L AcHT at 37˚C with shaking at 300 rpm. Samples were withdrawn periodically for
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