Rapid ochratoxin A determination in red wine using supported liquid membrane extraction followed by fluorescence spectroscopy

Zhai, Demi Shuang; Zhang, Zuchen; Meulebroeck, Wendy; Ottevaere, Heidi; Smedsgaard, Jørn

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Rapid ochratoxin A determination in red wine using supported liquid membrane extraction followed by fluorescence spectroscopy

Demi Shuang Zhai¹, 2, *, Zuchen Zhang², Wendy Meulebroeck², Heidi Ottevaere², Jørn Smedsgaard¹

¹Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
²Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics (TONA), Faculty of Engineering, Vrije Universiteit Brussel, Brussels, Belgium

This work describes a rapid sample preparation coupled with independent fluorescence detection for ochratoxin A determination in red wine samples, which has been proven to have the advantages of low solvent consumption, high recovery efficiency and user-friendly operating processes. The validated linear detection range was from 12.5 ppb to 200 ppb with a R² coefficient of 0.9959. The limit of detection is 50.7 ppb, which needs further optimisation to reach the maximum acceptable limit regulated by European Commission (2 ppb).

Supported Liquid Membrane Extraction (SLME)
Based on the principle of pH gradient assisted molecular transport, SLME is suitable for molecules of which the polar status can be manipulated. OTA is a weak organic acid with a pKa value of 7.1 and a log P value of 4.74, allowing the molecule to achieve protonation and deprotonation by the adjustment of pH, making it a great target for SLME.

Fluorescence Spectroscopy
The fluorescence measurements were carried out with a macroscopic laboratory set-up consisting of a Ti-sapphire laser, a harmonic generating unit, a sample holder and an optical spectrum analyser. The sample was positioned on the sample holder, which contains a circular aperture. In this work, the sample plate was put upside down and the laser came from the bottom, exciting the extracted solution through the sealing tape.

Fig. 1 A diagram of a single well in the 96-well microplate extraction, where the basic principle of SLME and the OTA enrichment direction are illustrated.

Multi-well SLME

Fig. 2 The schematic view of the essential parts in the multi-well SLME: left: the assembling order of the sample plate, acceptor plate and sealing film; right: the top-down view of the acceptor plate, showing PVDf membrane. The laser comes vertically from the bottom and through the sealing tape.

Validation of SLME recovery efficiencies

Fig. 3 96-well microplate SLME acceptor phase OTA concentration versus sample OTA concentration (sample volume 250 µL, sample OTA linear range 1 - 10 µg L⁻¹; acceptor solution volume 50 µL; n = 3) using red wine samples with error bars representing relative standard deviations. The concentration of the extracted phase corresponds with three times the sample concentration, with a R² coefficient of 0.9966, therefore it can be regarded as exhaustive extraction.

Ochratoxin A (OTA) is a well-known mycotoxin found in several types of food. It is not only classified as possibly carcinogenic but also nephrotoxic and immunotoxic.

Wine is considered to be the second most significant source of human OTA intake.

Red wine is more likely to be contaminated due to the longer contact time between grape skins and juices during fermentation.