Dynamics of nitrous oxide production pathways analysed by 15N18O dual isotope labelling – data from a full-scale wastewater treatment plant

Jensen, Marlene Mark; Ma, Chun; Lavik, Gaute; Kuypers, Marcel MM; Smets, Barth F.

Publication date: 2018

Document Version
Version created as part of publication process; publisher's layout; not normally made publicly available

Citation (APA):
Dynamics of nitrous oxide production pathways analysed by 15N/18O dual isotope labelling – data from a full-scale wastewater treatment plant

Marlene Mark Jensen*1, Chun Ma2, Gaute Lavik3, Marcel M. M. Kuypers3, Barth F. Smets4, Bo Thamdrup2

1Technical University of Denmark/Department of Environmental Engineering, Denmark, 2University of Southern Denmark, Denmark, 3Max Planck Institute for Marine Microbiology, Germany, 4Technical University of Denmark, Denmark

Nitrous oxide production associated with biological nitrogen transformations can contribute substantially to the CO₂ footprint of both man-made and natural systems, but the pathways and regulation of nitrous oxide production are poorly understood. We developed a 15N/18O dual isotope labelling technique to distinguish and quantify these pathways in mixed communities. The use of 18O-O₂ permits differentiation of hydroxylamine oxidation and nitrifier-denitrification driven nitrous oxide production by ammonium oxidizing bacteria. We analyzed nitrous oxide production pathways during biological nitrogen removal at Lynetten wastewater treatment plant, Denmark. Under anoxia, nitrous oxide accumulated due to denitrification, but nitrous oxide accumulation was ~3 and 1.7 times higher at 30 and 100 μM O₂, respectively. Oxic nitrous oxide production was dominated by nitrifier-denitrification, reaching 73% of the total, with the remainder due to hydroxylamine oxidation. Our results demonstrate three active pathways of nitrous oxide production, each with different environmental controls. The dual 15N/18O isotope labelling approach can contribute to the development of strategies to minimize nitrous oxide emissions from man-made and natural systems.