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ABSTRACT 

Water-based inks, containing nanometric NiO and YSZ particles in 66/34 vol. % ratio, are 

produced by colloidal stabilization of a binary dispersion obtained via continuous hydrothermal 

synthesis at supercritical conditions, i.e. 280 bar and 400°C. The method yields single-crystal 

particles with diameter ≤ 10 nm for both phases in a single-step process, achieving a highly mixed 

composite. Two different approaches are applied to formulate inks printable with piezoelectric 

printheads, i.e. an electrostatic and an electrosteric stabilization path. The use of an electrosteric 

dispersant results in colloids with superior stability > 200 days, more uniform thin films and finely 

nanostructured porous cermet films with thickness below 500 nm, after reducing NiO to Ni. 
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Particles coarsening to 50-150 nm is obtained at 1000°C, accompanied by a shrinkage of ca. 43 % 

in thickness without the formation of cracks or delamination of the zirconia substrates. 

 

Keywords: inkjet printing, hydrothermal synthesis, nanomaterial processing, colloid. 

 

1. Introduction 

The investigation of functional nanometric ceramics for energy related devices is spreading to 

several technologies such as photovoltaics [1,2], solid oxide fuel/electrolysis cells [3–7], batteries 

[8–10] and heat transfer [11]. This is especially due to the unique properties of nanomaterials in 

terms of performance [3,4,12,13], and their special features in the processing [14,15]. However, 

exploiting the technological potential of nanostructures can result problematic as it requires control 

of their synthesis [16,17], agglomeration [18] and of the hazards related with handling 

nanopowders [19].  

Several different methods are available nowadays for the direct synthesis of nanomaterials, such 

as coprecipitation, sol-gel, and solvo/hydro-thermal synthesis [20]. Among them, the hydrothermal 

route has been intensively proposed for the synthesis of a wide range of metal oxides nanoparticles 

with different morphologies [16,17,21]. Due to its versatility, this method has been developed 

towards continuous flow reactors [17,22], which are now employed in industrial productions [23]. 

An additional peculiarity of the Continuous Hydrothermal Synthesis (CHS) is the possibility to 

operate above the supercritical point of water, i.e. scH2O: T > 374°C, p > 221 bar. In these 

conditions, the dielectric constant and viscosity drop to 20 and 30 μPa s respectively, resulting in 

a suitable environment for the particle nucleation, and producing dispersed nanoparticles with a 

narrow particle size distributions [24]. The resulting water-based suspensions have a strong 
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potential for application in liquid processing of nanomaterials at ambient conditions, where 

viscosity and dielectric constant are restored, and the dispersion can be stabilized for completing 

an all-wet processing strategy. This is particularly suitable for deposition techniques where very 

low viscosities are required, such as inkjet printing.  

Drop-on-demand (DOD) inkjet printing is based on the digitally controlled deposition of droplets. 

In a typical DOD printer, hundreds to thousands of droplets ranging from picoliters (10-12 L) to 

nanoliters (10-9 L) are jetted at high frequencies (thousands of Hz) to print features in the tens of 

microns range. In the last 20 years, this technique has been investigated for the deposition of metals 

and ceramic materials due to the advances in the formulation of particle-containing inks [25–29]. 

Consequently, by inkjet printing it is possible to address the deposition of ng of ceramic particles 

at high spatial resolution [27]. 

However, to achieve such processing performances, it is crucial to control the colloidal properties 

of the ink, especially in the case of nanofluids, which are known to show unique rheology [30,31]. 

First, particle agglomeration needs to be reduced for keeping the largest aggregates below 1/50th 

of the nozzle diameter to avoid clogging of the nozzle and printhead [32]. Second, stable and 

reproducible jetting is only achieved when the ink rheology is optimized for inkjet printing. This 

has been studied through modelling [33–35] and experimentally [28,35,36], indicating that a 

specific combination of viscosity and surface tension is required for generating stable droplets 

[27,36].  

In this article, binary inks containing both YSZ and NiO nanoparticles were produced by 

converting the dispersion obtained by CHS. The combination of YSZ and NiO represents the most 

common choice for the fabrication of porous Ni/YSZ electrodes of fuel cells and electrolysers [37] 
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In our previous work, the formulation of metal oxide nano-inks produced by CHS has been shown 

in the case of Yttria Stabilized Zirconia (YSZ) [38]. Here, we further explored those results by 

investigating the formulation and printing of a binary ink containing both YSZ and NiO 

nanoparticles, [37]. Inkjet printing of these materials have been shown in literature, but the ink 

formulation used commercial particles of 150 nm for YSZ [39,40] and 20-30 nm [39] or 200-400 

nm [40] particles for NiO, thus involving the manipulation of dried powders and mixing of the two 

materials. 

Differently, in this work, the starting binary nanoparticle colloid has been produced via CHS at 

supercritical conditions, using a previously optimized route [41]. This method takes advantage of 

synthesizing NiO and YSZ nanoparticles in a single step, producing a highly mixed composite. 

Despite this advantage, the addition of a second phase to the dispersion introduces an additional 

challenge for the ink formulation. Stabilizing suspensions with more than one material is indeed 

difficult due to the need of finding a common pH range where both YSZ and NiO are stable. For 

NiO, the isoelectric point (IEP) has been reported at different pH values, e.g. 3 [42], 5 [43,44], 6 

[45], 8.5 [46] >9 [47]. For YSZ, as well, the same parameter was observed to assume a variety of 

values, such as 3 [42], 5[44], 6.5-7 [48], 9 [49], 8 [50,51], 9.5 [48].  From these results, it is clear 

that, depending on the surface chemistry of the specific YSZ and NiO particles analysed, the IEP 

can vary significantly. Therefore, avoiding agglomeration of both materials and hetero-

aggregation in the ink can be a major challenge, compared to the single-material case. To tackle 

these issues, here we show two different approaches for formulating printable YSZ/NiO nanoinks 

via electrostatic and electrosteric stabilization. The first approach avoids additives, but is bound to 

a specific ink composition, while the second provides more flexibility in the ink formulation, but 

requires the use of dispersants.  
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2. Experimental 

2.1 Particle Synthesis and characterization 

The continuous hydrothermal reactor at DTU Energy and the synthesis protocol for NiO/YSZ have 

been described previously [41]. The detailed synthesis of pure YSZ is reported here [38]. For the 

synthesis of the NiO/YSZ composite herein, a precursor stream of 0.031 mol L−1 ZrO(NO3)2, 

0.0054 mol L−1 Y(NO3)3, and 0.14 mol L−1 Ni(NO3)2 with a flow rate of 8.3 mL min−1 was mixed 

with a stream of 1 mol L−1 of KOH at 9.8 ml min-1. The resulting stream was mixed with 

supercritical water (flow equivalent to 14.5 mL min−1 at room temperature) at 400 °C and 280 bar. 

The stream of reactants and scH2O was re-heated to 385°C after mixing, with the aid of a re-heater. 

The products were eventually cooled down to room temperature and the pressure released. After 

collection, the particles were concentrated by centrifugation and re-dispersed in clean DI water 

five times. The centrifugation speed and time was increased after each cleaning cycle due to the 

higher stability of the colloid while decreasing the ionic strength of the dispersion. The first cycle 

was carried out centrifuging at 5000x g for 4 minutes, while the fifth cycles required a speed of 

10000x g for 20 minutes. The dispersion obtained after this step will be referred to as starting 

dispersion and a pH indicator was used to measure a pH of 10 < pH < 11.  

The X-ray diffraction characterization was carried out with a Bruker D8 (Cu Kα radiation) 

measuring with a 0.05° / 5 s step size / step time. The as-produced particles were analyzed by  

Transmission Electron Microscopy (TEM), using a Jeol 3000F microscope. The final phase ratio 

between NiO and YSZ was determined by Energy Dispersive X-ray (EDX) spectroscopy using a 

Zeiss Merlin SEM equipped with a Bruker XFlash 6 EDX detector. A few droplets of the starting 

dispersion were casted onto a microscopy stub covered with carbon tape and let dry. The dried 

material was analyzed by acquiring EDX spectra from three different areas.    
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2.2 Ink formulation and characterization 

Isopropanol (Sigma Aldrich, analytical grade, IPA), propylene glycol (Sigma, analytical grade, 

1,2-PG), 1-propanol (VWR Chemicals, Emsure, ACS Reag. Ph Eur), Dispex A40 (Ciba-BASF, 

UK, Mw 3410 g mol-1), nitric acid (69% VWR Chemicals, Emsure, ACS Reag. Ph Eur) were used 

as received. For the electrostatic stabilization studies (Ink1), IPA, 1,2-PG and the starting 

dispersion were mixed in a 1:1:1 volume proportion. Ink1 was mixed for 15 minutes at 35% 

amplitude in a Sonics Vibra Cell 505 sonicator in the "Cup horn" configuration with 5 s pulses 

alternated with 5 s at rest. In the case of electrosteric stabilization (Ink2), the dispersion was 

sonicated with a Hielscher UP200ST sonicator using a tip configuration and applying 120 s bursts 

at 50% amplitude upon each addition of Dispex A40. The ink bottle was kept immersed in water 

to avoid overheating. Prior to that, the pH was lowered to 8.5 using HNO3 and the pH was 

confirmed a pHenomenal pH 1000 L pH-meter. The particle size distribution was measured with 

Dynamic Light Scattering (DLS) and laser diffraction to cover the whole range of particles and 

agglomerates. A Malvern Zetasizer was employed for the DLS measurements and the samples 

were prepared by diluting the starting dispersion to 0.1% wt using the same solvent composition 

and adjusting the pH to desired values by adding HNO3. The same instrument was employed for 

the measurement of the ζ-potential, repeating the analysis three times for each sample. The pH 

values were measured with a Metrohm 744 pH-meter. Laser diffraction measurements of the 

particle size distribution (PSD) were carried out with a Beckman Coulter, LS 13320. The 

viscosities of the inks were measured using a SV-1 A series viscometer (A&D Instruments 

Limited) and an Anton Paar MCR 302 rheometer in rotational mode, considering the viscosity 

value at a shear rate of 1000 s-1. All the measurements were carried out at room temperature. The 

surface tension was measured with a bubble pressure tensiometer (BP50, KRÜSS) and a drop 
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shape analyzer DSA-30 (Krüss) in pendant droplet geometry. The printability parameter Z was 

calculated for comparing the properties of the inks, as reported in previous publications [26]. The 

dimensionless parameter Z was proposed as a good descriptor for taking into account the most 

important fluid properties for the jetting process, and has the form: Z = (ρ·σ·a)1/2/η [33], where σ 

the surface tension, ρ is the density, η the viscosity, and a is the characteristic length, typically 

associated with the nozzle diameter. Different Z ranges are reported in literature where optimal 

jetting has been observed, such as 1-10 [27], 4-14 [36], and 4-20 [38]. Solid loading of the 

dispersions was measured by Differential Thermal Analysis/Thermogravimetry (DTA/TG) 

performed on the starting dispersion using a STA 409 PG (Netzsch) at a constant rate of 10 K 

min−1 until a maximum temperature of 400°C under air. 

 

2.3 Inkjet printing 

Inks were jetted and printed using two printers: a Pixdro LP50 and a Fujifilm Dimatix DMP-

2850 both equipped with the same DMC disposable piezoelectric printheads from Dimatix. These 

printheads have 16 nozzles of 21.5 μm in diameter for jetting droplets with a nominal volume of 

10 pL. According to the printhead specification, the best performances are achieved using inks 

with a viscosity of 10 mPa s and a surface tension of 30 mN m-1. For Ink1, the waveform actuating 

the piezoelectric elements responsible for the droplet ejection was optimized starting from a 

standard trapezoidal pulse. This waveform was characterized by a jetting segment of 4–7 μs, a 

dwell segment of 10 μs at 40-60V and fall time 5 μs. A jetting frequency of 1000 Hz was used for 

all the tests. A splat spacing of 63 μm was employed for printing the multi-layered films. For Ink2, 

a sigmoidal waveform was applied with a total pulse duration of ca. 11 μs and maximum voltage 

between 13 and 18 V. In this waveform, the jetting pulse is preceded by a filling pulse where the 

piezo element is moved in the opposite direction with a potential of -10 V. Multi-layers were 
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printed with a 40 μm droplet spacing. All the samples were printed onto in-house produced 8%mol 

YSZ (TZ-8Y powder from Tosoh) pre-sintered substrates. Before printing, Ink1 was filtered using 

a 700 nm mesh syringe filter and Ink2 was filtered using a 1.3 μm mesh syringe filter. The droplet 

radius and eventually their volume was determined by image analysis. 

 

2.4 Sintering and thermochemical reduction 

The printed layers were sintered in air using the following thermal cycle: RT – 600°C at 15°C h-1; 

dwell for 2h; 600°C – 800°C, 1000°C or 1295°C at 60°C h-1; dwell for 6h; cooling down at 100°C 

h-1. The sintered materials were treated overnight at 800°C with a H2/N2 9% vol flow for the 

reduction of NiO to Ni. The resulting microstructures were analyzed using a Zeiss Merlin Scanning 

Electron Microscope (SEM) and a FEI Teneo SEM. Porosity was estimated by image analysis.  

 

3. Results and discussion 

The processing of NiO/YSZ was begun with the binary material synthesis of the two phases by 

continuous hydrothermal synthesis. Fig.1A shows a sketch of the continuous hydrothermal reactor 

used with the selected configuration for the streams of reactants and H2O at supercritical conditions 

(scH2O). 
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Fig. 1: (A) sketch of the continuous flow reactor, (B) TEM images of the NiO/YSZ nanoparticles, (C) diffractogram of 

the synthesized material with the indexed reflections used for distinguishing NiO and YSZ, and (D) TEM images of 

YSZ nanoparticles synthesized independently.  

 

Ni, Zr and Y nitrates were fed into the system and pre-mixed with a KOH solution in a T-shape 

mixer. This stream was eventually mixed in a co-flow geometry with the scH2O stream, and the 

resulting dispersion was cooled down and collected after releasing the pressure.  

The morphology of the as-produced materials was analysed by TEM microscopy (fig. 1B). The 

size of the NiO and YSZ nanoparticles was comprised between 3 and 12 nm, with NiO forming 

40% smaller particles in average, compared to YSZ. In the TEM micrograph it was possible to 

distinguish both NiO and YSZ nanoparticles by comparing the measured lattice spacing with the 

position of the diffraction peaks. Three peaks were chosen: (111) and (220) for YSZ and (200) for 

NiO, due to their distance from other reflections, see fig. 1C. By measuring the fringe spacing of 

the particles in the TEM images, it was possible to associate them to the aforementioned peaks and 
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identify YSZ or NiO particles. In fig. 1B, three YSZ particles were highlighted with a spherical 

morphology and a diameter of 4-12 nm. From the same micrograph, it was possible to distinguish 

two NiO particles, labelled, which were more elongated than YSZ with a diameter of ca. 3-5 nm. 

The other particles in fig. 1B showed a lattice spacing corresponding to reflections which are 

overlapped between YSZ and NiO, thus they could not be uniquely identified. The TEM 

micrograph highlighted the crystallinity of the produced materials that was confirmed by the result 

of the XRD measurement, where the peaks for both phases, YSZ and NiO, could be identified (fig. 

1C). The shape of the XRD peaks indicated the presence of nanosized crystalline domains, which, 

according to the Sherrer equation, measured 7 nm for YSZ and 4 nm and NiO. This result 

correlated well with the data obtained from microscopy and confirmed that the synthesized 

nanoparticles are made of individual crystallites. The YSZ obtained in the binary material 

synthesis (fig. 1B) was compared to the pure YSZ (fig. 1D) indicating that the size and morphology 

of YSZ particles in the two syntheses were similar. Finally, an elemental analysis was carried out 

by EDX on the dried powders for determining the discrepancy between the composition of the 

precursor solution and the final material. Precursors solutions were prepared to have an elemental 

molarity ratio of Ni:Zr:Y of 0.79:0.18:0.03, corresponding to a final desired volume ratio of 

NiO/YSZ = 0.675/0.325 vol. %. This ratio was representative for typical compositions used for 

the fabrication of functional Ni/YSZ cermets [37]. The EDX analysis showed a composition of 

0.77 : 0.20 : 0.03 for Ni : Zr : Y in the final product, indicating a slightly higher conversion of Zr 

than for Ni.  The yields of the two reactions were thus similar and allowed to obtain a final 

composite with a composition close to the desired one, i.e. NiO/YSZ = 0.66/0.34 vol. % ratio (see 

Fig. A1 and Table A1 in the Appendix A). This ratio would lead to a Ni amount > 50% vol after 

thermochemical reduction, which is higher than the volumetric ratio required for Ni percolation.  
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For synthesizing NiO particles with size < 10 nm, KOH needed to be added at the mixing stage, 

where it acted as mineralizer and reduced the NiO particle diameter [41]. Consequently, the 

produced dispersion was strongly basic, differently from the synthesis of pure YSZ, where the 

starting dispersion for the ink formulation showed a pH of 3. For NiO/YSZ, the starting dispersion 

had a pH > 10 with a strong impact on the particle size distribution (PSD). In particular, fig. 2 

shows that, in the pure YSZ dispersion (B), only a small fraction of particles formed small 

agglomerates < 200 nm. On the other hand, the NiO/YSZ composite contained a large fraction of 

agglomerates with size > 1 μm that exceeded the maximum printable size of 400 nm. This result 

indicated that stabilizing the colloid is a crucial step to achieve a printable ink.  

Two different stabilization paths were investigated, as shown in fig. 2. The first one only relied on 

electrostatic variations of the particles chemical environment, i.e. changing pH and supernatant 

polarity (fig. 2A). In the second, a commercial dispersant, Dispex A40, was used to add a steric 

contribution to the colloidal stabilization. Dispex A40 was chosen as a dispersant due to its 

effectiveness in dispersing metal oxide particles in aqueous media under basic pH conditions [29].  

For the two approaches, the results were expected to be complimentary.  

The purely electrostatic stabilization avoided the use of organic additives, which would lower the 

green density of the material, but required a careful control of the pH depending on the solvent 

polarity. In particular, the surface charge of the particles of both materials needed to be maximised, 

in order to enhance the electrostatic repulsion. This was carried out by controlling the pH of the 

dispersion, in order to increase the ζ-potential and move away from the isoelectric point. As a rule 

of thumb, colloidal stability is reached when the absolute value of the ζ-potential exceeds 30 mV 

[52]. However, the choice of the pH should also take into account the material stability, as harsh 

acidic or alkaline conditions can lead to dissolution of some of the ions. Additionally, controlling 
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the pH by the introduction of electrolytes increases the ionic strength of the dispersion, with the 

effect of shrinking the electrical double layer surrounding the particles. This effect is quantified 

by the Debye length, κ-1 = (εo εr kb T / e2 NA 2I)1/2 - where εo is the vacuum permittivity, εr is the 

relative dielectric constant, kb is the Boltzmann constant, T is the temperature, e the elementary 

charge, NA the Avogadro number and I the ionic strength. κ-1 is typically referred as the double 

layer thickness, although the potential varies significantly along a larger distance (3κ-1 - 4κ-1) [52].  

Conversely, in the electrosteric stabilization (fig. 2C) a polymeric dispersant was used for 

modifying the surface charge and add a steric contribution to the particle repulsion. In this way, 

the IEP of the dispersion can be changed without directly working on the pH. 

 

Fig. 2: PSD of the NiO/YSZ dispersion after addition of IPA and 1,2-PG at different pH (A), PSD of the aqueous 

starting dispersion of NiO/YSZ at pH 10-11 (B solid line). Pure YSZ dispersion is shown for comparison (B dotted 

line). PSD of the NiO/YSZ dispersion upon the addition of an increasing amount of the dispersant Dispex A40, final 

pH 8.5 (C). The black vertical line in all plots indicates the maximum agglomerate size for avoiding nozzle clogging, 

i.e. 400 nm.  

 

For reaching a printable Ink1 via electrostatic stabilization, the influence of pH on the PSD was 

investigated. PSD data were collected using the exact solvent composition of the final ink, a crucial 

parameter for electrostatic stabilization. Pure water as solvent has a too low viscosity and too high 

surface tension for the ink formulation. Therefore, prior to the PSD measurements, IPA was added 
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to the starting dispersion for decreasing the surface tension to 30 mN m-1 (see table 1). However, 

due to the low boiling point of IPA (B.P. 78 ° C), 1,2-PG (B. P. 188 ° C) was also added to reduce 

the ink evaporation rate, and the related risk of nozzle clogging.  

Fig. 2A reports the PSD curves of the mixed dispersions at different pH values. At extremely basic 

and acidic conditions, pH 1 and pH > 11, particles agglomerated in a few seconds, as it can be seen 

for the curve at pH 1. In the case of pH 1, this was due to the increase in the ionic strength to a 

value of ca. 0.1 M and a subsequent decrease of the κ-1. On the other hand, in the case of pH 11,  

the ionic strength was estimated to be ca. 1*10-3 M, i.e. three orders of magnitude lower than the 

previous case and comparable to the dispersion at pH 3. For this reason, the colloid destabilization 

was more likely produced by a drop in the ζ-potential caused by the pH increase.  

For pH values between 3 and 9, the measured PSD approached values comparable to what was 

observed by microscopy. Indeed, the maximum of the curves was comprised between 10 and 100 

nm, indicating a strong reduction of the agglomerates, close to the primary particle size. In this 

solvent system, a large pH window between 3 and 9 existed, where the resulting PSD respected 

the size limit for inkjet printing, without the addition of an organic dispersant. However, this 

window does not consider the possible dissolution of Ni2+ and Y3+, which would be expected for 

pH < 7 [53,54]. Hence, stable inks at alkaline pH are preferred for the application in inkjet 

deposition. 

To explain the observed dispersion at high pH, the ζ-potential was measured for dispersions at pH 

9 and pH 8, giving maximum values of 52.3 ± 0.7 mV and 57.4 ± 1.9 mV, respectively (see fig. 

A3 APPENDIX A1). These results indicated a large positive charge on the particle surface, which 

was unexpected for a high pH as 9. In addition, the potential distribution measured was spread in 

a wide range in all the measurements carried out. The spreading was quantified by calculating the 
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full width half maximum (FWHM) of the peaks, corresponding to ± 44 mV and ± 33 mV for pH 

9 and 8, respectively. These results were, however, consistent with the colloidal stability and 

narrow PSD observed at both pH. The measured values could also explain the electrostatic 

destabilization observed at pH 11. Being the particles still positively charged at a pH as high as 9, 

a further increase in the pH led to decreasing the surface charge, resulting in the particle 

agglomeration.  

In the electrosteric stabilization to prepare Ink2, different amounts of Dispex A40 were added to 

the starting dispersion, as it can be seen in fig. 1C. Dispex A40 is the ammonium salt of a 

polyacrylic acid and has a molecular weight of 3410 g mol-1. The pH of the starting dispersion was 

adjusted to 8.5 in order to reach the pH range where Dispex A40 is most effective, according to 

what suggested by the producer. Fig. 1C shows a first large increase in the agglomerate size upon 

addition of 0.4% wt of Dispex A40 due to bridging. Bridging was a result of the polymeric chains 

binding to more than one particle and thus forming agglomerates [18]. This indicated that 0.4% wt 

of dispersant was not enough to cover the particles’ surface completely. By adding 4% wt of 

dispersant, the number of agglomerates due to bridging reduced notably, as most of the volume 

fraction of the material laid below 400 nm. However, the resulting dispersion was still not printable 

since agglomerates with a diameter of 1 μm and > 10 μm were still present. For this reason, the 

amount of dispersant was increased gradually until a plateau was reached at 8% wt, where the 

agglomerates formed a broad and low intensity peak between 1 – 100 nm. Filtering of the 

dispersion through a 0.7 μm filter was done to secure the elimination of the few larger agglomerates 

that had remained. The curve in fig. 2C confirmed the absence of agglomerates after filtering. 

Thermogravimetric analyses on the dispersion before and after filtration showed a solid loading 

variation of only 0.12% wt, from 6.36 %wt to 6.24 %wt (see Fig. A2 in Appendix A). This result 
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indicated that only a minor part of the material was agglomerated and removed by filtration. 

Moreover, the PSD was measured on the same dispersion after >200 days on the shelf, showing 

still a printable size distribution and demonstrating a very good long-term colloidal stability. Thus, 

this approach resulted in a highly dispersed colloid maintaining a printable PSD for more than 6 

months.  

The dispersions stabilized by these two approaches were then investigated for their direct use for 

inkjet printing. Among the colloids stabilized electrostatically, the dispersion at pH 9 was selected 

as it fulfilled all printing requirements. This pH was also advantageous to avoid the aforementioned 

dissolution of and Ni2+ which is known to take place at low pH [48,53,54]. Viscosity, surface 

tension and density were measured and the obtained values are reported in table 1. The σ and η 

values fit the printhead specifications and the printability parameter Z laid in the optimal range 

between 1 and 10. This ink will be referred to as Ink1.  

Differently, a surface tension of 60 mN m-1 was measured for the colloid stabilized by the second 

approach, hence, 30% wt of 1-propanol was added for decreasing σ to 25 mN m-1. The resulting 

ink showed a lower viscosity than Ink1, with a Z value of 11, see table 1. This was higher than the 

empirical limit of 10, yet was still in the range of good printability observed in a previous study 

on nanometric YSZ (4 < Z < 20). This second ink, with the addition of the dispersant, is here 

referred as Ink2.   

The experimental printability of the two inks was studied by depositing layers and patterns onto a 

pre-sintered 8YSZ substrate. The waveform for actuating the piezoelectric elements of the 

printhead was optimized for both inks. In the case of Ink1, a sigmoidal waveform was used to 

achieve a stable jetting of single droplets, see fig. 3A. For Ink2, a trapezoidal waveform was 
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employed for achieving single, round-shaped droplets (fig. 3B). Therefore, both inks could be 

jetted successfully forming stable droplets with a volume comprised between 7-9 pL. 

 

 

Fig. 3: jetting of the inks stabilized electrostatically and electrosterically, Ink1 (A), Ink2 (B). Separated splats (C) 

and fine grid (5 layers, D) printed with Ink1. Continuous films printed onto dense YSZ with Ink1 (E) and Ink2 (F). 

 

Using the optimized jetting conditions, the behaviour of the inks during printing was investigated. 

Separated splats were printed to define the spatial resolution of the process. A splat diameter of 

ca. 50 μm was measured for Ink1 (fig. 3C), which represented the smallest printable feature under 

these conditions. Noteworthy, the splats showed a remarkably uniform distribution of the particles 

after drying, i.e. a negligible coffee stain effect. These printing capabilities were demonstrated by 

depositing complex patterns, such as the grid reported in fig. 3D. Finally, continuous films up to 

1.5x1.5 cm2 were printed (see Fig. A4 in the Appendix A) increasing the areal solid loading by 

printing multiple layers up to values of 0.21 mg cm-2 for Ink1 (fig. 3E) and 0.10 mg cm-2 for Ink2 

(fig. 3F). These values refer to the final amount of solid particles deposited. 
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The continuous films were used to study the material behaviour during the sintering and 

thermochemical reduction of NiO. Films printed with both inks were sintered in air at 1000°C and 

SEM analyses were carried out to observe the resulting microstructures (fig. 4).   

 

Fig. 4: microstructure after sintering at 1000°C of films printed with Ink1 (A,B) and Ink2 (C,D). Low magnification 

images of the films: agglomerates with Ink1 (C) and uniform film with Ink2 (D). 

 

Fig. 4A and fig. 4C compare the microstructure at high magnification of the materials printed with 

Ink1 and Ink2. They were both characterized by a very open structure with a continuous network 

of pores and interconnected particles with size between 50 and 150 nm. Therefore, at 1000° C, 

there was already a pronounced grain growth compared to the untreated particles (≤ 10 nm). At 

this magnification, no big differences could be identified between materials printed with the two 

inks. Such a result was unexpected as the Ink2 contained an organic dispersant that lowered the 

green density of the deposited material. Densification is probably prevented by the constrain of 
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the pre-sintered substrate, regardless of the ink composition. On the other hand, differences could 

be observed on a larger scale, represented here by fig. 4B and fig. 4D. In particular, large 

agglomerates were present and distributed on the whole surface of the films printed with Ink1, 

when the areal solid loading is ≥ 0.13 mg cm-2. These agglomerates have large dimensions, 

comprised between 1 and 10 μm, and formed necessarily after printing. Indeed, the PSD of the ink 

did not indicate the presence of such agglomerates, as previously discussed. Moreover, 

discontinuous jetting and clogging of the printhead would be expected with such large particles, 

but was not observed. After deposition, the particles possibly agglomerated during drying of the 

ink, when the supernatant polarity gradually changed due to the different boiling points of the 

solvents, accompanied by a pH increase.  

Differently, Ink2 formed crack-free films on a centimetre-size scale after sintering at 1000 ° C, 

see fig. 4D. In this case, the presence of the organic dispersant covering the particle surfaces 

prevented agglomeration, also during the evaporation of the supernatant. Therefore, the electro-

steric stabilization represented a reliable option for the fabrication of high quality films with a 

uniform microstructure.  

After comparing the two approaches, samples printed with Ink2 were chosen for their better 

microstructure to investigate in detail the last processing step, i.e. thermal treatments. In particular, 

the microstructural analyses were carried out after the reduction of NiO to metallic Ni in order to 

correlate the sintering temperature to the microstructure of the final cermet. Films produced by 

printing Ink2 were sintered at three different temperatures, 800, 1000 and 1295°C in air and were 

subsequently reduced in a N2/H2 atmosphere at 800°C for 18h. Fig. 5A-F reports top-view and 

cross section micrographs for each temperature.   
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Fig. 5: Top view and cross section of the microstructures obtained after sintering at 800°C (A,B), 1000°C (C,D) and 

1295°C (E,F), each followed by reduction under H2/N2 at 800°C. EDX mapping of the sample sintered at 1295°C, 

(G) Ni signal, (H) Zr signal. 

 

The images show an evident coarsening of particles and porosity with temperature. At 800°C, the 

nanosize of the particles was still preserved and the porosity formed an interconnected network 

with a width < 100 nm and ca. 35% vol porosity (see Fig. A5 in Appendix A). The cross-section 

image highlighted a continuous and uniform cermet film having a thickness comprised between 

450-600 nm. At 1000°C, the microstructure after reduction of NiO (fig. 5C) had larger pores 
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compared to the oxidized material in fig. 4C, due to the loss of oxygen. The homogeneous increase 

of the porosity indicated a homogeneous distribution of the NiO particles in the deposited material. 

The mass diffusion and particles coarsening led to a shrinkage of the film with a subsequent 

reduction in thickness to 250 – 350 nm (fig. 5D). This corresponded to a large shrinkage in the z-

direction of ca. 43%, while no dimensional variation took place in the x-y directions, due to 

constrain given by the substrate [55–57]. Noteworthy, the stresses generated during this thermal 

treatment did not form cracks in the printed films. A further increase in the sintering temperature 

to 1295°C led to a particle growth in the submicron range, fig. 5E. In this case, many particles 

were disconnected from each other, and the substrate was easily visible. EDX mapping (fig. 5G, 

5H) allowed interpreting the obtained microstructure. In particular, the elemental analysis 

demonstrated that, in addition to the particle growth, only Ni particles were left on top of the 

substrate, while the printed YSZ inter-diffused in the substrate. Therefore, despite being 1295°C a 

typical sintering temperature for NiO/YSZ components [26], this temperature was too high for 

treating the nanostructured thin films. In conclusion, to maintain a nanosized structure of the 

material, the temperature should be kept as low as 800°C, while should not exceed 1000°C to 

prevent the diffusion of YSZ.  

 

4. Conclusions 

A binary NiO/YSZ composite with volume ratio 66/34 was synthesized in a single step process 

through CHS. Despite the formation of the two materials took place simultaneously, the final 

composition of the composite is close to the targeted one, with only 2.5% vol less of NiO than the 

stoichiometry of the precursor solution. Well-mixed particles were produced with a diameter of 4-

12 nm for YSZ, and 3-5 nm for NiO. Printable inks were formulated by stabilizing the synthesis 

product with two approaches, electrostatic and electrosteric stabilization. The ink produced by 
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electrosteric stabilization resulted in more uniform films and showed an ink stability for > 200 

days on the shelf. Therefore, the application of an electrosteric stabilization was more suitable for 

the deposition of NiO/YSZ nanostructured layers.  

After sintering at 800°C and reduction of NiO to Ni, films of 450-600 nm thickness were obtained. 

The material underwent shrinkage of 43% along the cross-section at 1000°C, associated with the 

coarsening of the particles to a diameter of 50-150 nm. Further increasing the sintering temperature 

to 1295°C led to the diffusion of the printed YSZ in the substrate. These results highlighted the 

high mass diffusion of these nanomaterials, and indicated that for keeping a nanostructured 

material, sintering temperatures as low as 800°C had to be used.  
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Figure Caption 

 

Fig.1: (A) sketch of the continuous flow reactor, (B) TEM images of the NiO/YSZ nanoparticles, (C) diffractogram of 

the synthesized material with the indexed reflections used for distinguishing NiO and YSZ, and (D) TEM images of 

YSZ nanoparticles synthesized independently.  

 

Fig.2: PSD of the NiO/YSZ dispersion after addition of IPA and 1,2-PG at different pH (A), PSD of the aqueous 

starting dispersion of NiO/YSZ at pH 10-11 (B solid line). Pure YSZ dispersion is shown for comparison (B dotted 

line). PSD of the NiO/YSZ dispersion upon the addition of an increasing amount of the dispersant Dispex A40, final 

pH 8.5 (C). The black vertical line in all plots indicates the maximum agglomerate size for avoiding nozzle clogging, 

i.e. 400 nm.  

 

Fig.3: jetting of the inks stabilized electrostatically and electrosterically, Ink1 (A), Ink2 (B). Separated splats (C) 

and fine grid (5 layers, D) printed with Ink1. Continuous films printed onto dense YSZ with Ink1 (E) and Ink2 (F). 

 

Fig.4: microstructure after sintering at 1000°C of films printed with Ink1 (A,B) and Ink2 (C,D). Low magnification 

images of the films: agglomerates with Ink1 (C) and uniform film with Ink2 (D). 

 

Fig.5: Top view and cross section of the microstructures obtained after sintering at 800°C (A,B), 1000°C (C,D) and 

1295°C (E,F), each followed by reduction under H2/N2 at 800°C. EDX mapping of the sample sintered at 1295°C, 

(G) Ni signal, (H) Zr signal. 
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Table 1: properties of the inks formulated using the two different stabilization approaches. 

Ink name Viscosity mPa s Surface tension mN m-1 Density g cm-3 Z Solid loading %wt 

Ink1 6 33 0.95 4.3 2.2 

Ink2 2 25 0.93 11.2 4.7 
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