Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography

Maria, Michael; Bravo Gonzalo, Ivan; Feuchter, Thomas; Denninger, Mark; Moselund, Peter M.; Leick, Lasse; Bang, Ole; Podoleanu, Adrian

Published in: Optics Letters

Link to article, DOI: 10.1364/OL.42.004744

Publication date: 2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Maria, M., Bravo Gonzalo, I., Feuchter, T., Denninger, M., Moselund, P. M., Leick, L., ... Podoleanu, A. (2017). Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography. Optics Letters, 42(22), 4744-4747. https://doi.org/10.1364/OL.42.004744

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In this report, we investigate the possibility of using a commercially available Q-switch pumped Supercontinuum (QS-SC) source, operating in the kHz regime, for ultra-high resolution optical coherence tomography (UHR-OCT) in the 1300 nm region. The QS-SC source proves to be more intrinsically stable from pulse to pulse than a mode-locked based SC (ML-SC) source while at the same time is less expensive. However, its pumping rate is lower than that used in ML-SC sources. Therefore, we investigate here specific conditions to make such a source useable for OCT. We compare images acquired with the QS-SC source and with a current state of the art SC source used for imaging. We show that comparable visual contrast is obtained with the two technologies is achievable by increasing the readout time of the camera to include a sufficient number of QS-SC pulses. © 2017 Optical Society of America

OCIS codes: (320.6629) Supercontinuum generation; (110.5400) Optical coherence tomography; (110.4280) Noise in imaging systems.

http://dx.doi.org/10.1364/OL.99.099999
In this report, we demonstrate that a low cost commercially available SC source using a Q-switched pump laser (QS-SC) (SuperK Compact, NKT Photonics) can be used for UHR-OCT. The pump laser operates at 22.222 kHz with a pulse length of 1.6 ns. This study shows that sufficiently good OCT images can be achieved with the only disadvantage of increase in the exposure time of the camera. We compare this QS-SC to an SC source recommended for OCT, which is based on a mode-locked pump laser (ML-SC) (SuperK Extreme, NKT Photonics) with a repetition rate of 320 MHz and a pulse length of 10 ps. The QS-SC source currently costs less than 15% of the ML-SC price.

Fig. 1. Sketch of the UHR-OCT system with DC: Directional Coupler; PC: Polarization Controller; CI, C2: Parabolic Collimator; Disp. C: Dispersion Compensation Block; NDF: Neutral Density Filter; M1: Flat Mirror; OBJ: Scanning Lens.

The UHR-OCT setup, shown in Fig. 1, is a Michelson interferometer with an ultra-broadband 50/50 directional coupler (DC) splitting the light into a reference arm and a sample arm. The reference arm consists of a reflective collimator (C2 - Thorlabs, RCO4APC-P01), a dispersion compensation block (Thorlabs, LSM02DC), a variable neutral density filter (ND Filter), and a flat mirror (M1). The sample arm consists of a reflective collimator (C1 - Thorlabs, RCO4APC-P01), a set of galvanometer-based XY-scanners (Thorlabs, GVS002/M) and a scan lens (OBJ - Thorlabs, LSM02) offering a spot size of 11 µm at a wavelength of 1315 nm. The spectrometer is a Cobra 1300 (Wasatch Photonics) with an optical bandwidth from 1070 nm to 1470 nm. To do so, the light from the SC source was filtered using several 10 nm bandpass filters (Thorlabs) stepped in their central wavelengths by 50 nm, then detected by an InGaAs photodiode (Thorlabs - DET08GFC - 800 to 1700 nm, 5 GHz). The pulse train was recorded with a fast oscilloscope (Teledyne LeCroy - HDO9404 - 10 bits resolution, 40 GS/s, and 4 GHz). The measured RIN and pulse energy at 1070 nm and 1470 nm using a photodiode and spectrometer range from 1070 nm to 1470 nm. To do so, the light from the SC source was filtered using several 10 nm bandpass filters (Thorlabs) stepped in their central wavelengths by 50 nm, then detected by an InGaAs photodiode (Thorlabs - DET08GFC - 800 to 1700 nm, 5 GHz). The pulse train was recorded with a fast oscilloscope (Teledyne LeCroy - HDO9404 - 10 bits resolution, 40 GS/s, and 4 GHz). Figure 3(a) summarizes the measured RIN as a function of wavelength. The QS-SC source has a low RIN, between only 2.5-5%. In contrast, the ML-SC shows strong fluctuations with a RIN ranging from 10 % to almost 45 % at longer wavelengths. We also observe that both SC sources show an increase of the RIN toward longer wavelengths as previously measured in other studies [6]. Apart from the intrinsic noise of the SC sources, it is important to keep in mind the different repetition rates of the sources. While the QS-SC source operates at a kHz rate, the ML-SC source operates at a MHz rate. A simple calculation shows that the difference in pulse number per spectrometer readout between the two SC sources is very large. Considering a line rate in the kHz regime for the camera, the ML-SC delivers several thousands of pulses per exposure time, while the QS-SC only a few pulses. For the QS-SC, the camera operates at a line rate of 76 kHz, corresponding to a duty cycle of 76%. The ML-SC source operates at a MHz rate, corresponding to a duty cycle of 1%. The camera, therefore, only captures a fraction of the total light from the ML-SC source, leading to a reduced SNR.

In terms of noise, the main contributions are the detector noise, the shot noise and the Relative Intensity Noise (RIN). Detector noise contains the noise due to the thermal photo-electron generation and signal digitization. Shot noise is the noise caused by the random arrival of photons at the detector. Finally, the RIN is the noise due to the amplitude fluctuations of the source. Optimally, an OCT system should operate in a regime where shot noise is dominant. This would give the highest Signal to Noise Ratio (SNR) [8,9]. In case of a noisy optical source, RIN can dominate leading to a reduced SNR.

Fig. 2. Spectra of both SC sources measured using (a) a commercial OSA and (b) a spectrometer after the interferometer. (c) Normalized PSF evaluated for each SC source at an axial position (distance) of 150 µm and the corresponding FT limited PSF.
instance, an exposure time of 100 µs corresponds to 32,000 pulses for the ML-SC and 2 to 3 pulses only for the QS-SC. However, it is not simple to estimate the improvement due to such a large repetition rate difference as the RIN is not Gaussian noise.

We now characterize the noise in the OCT images as the noise floor of a depth information profile (A-scan) obtained when blocking the sample arm. This is a standard method where one assumes that the signal from the sample arm is weak and does not contribute to noise. To clearly show the trend between the noise and exposure time we average over 500 A-scans. Figure 3(b) shows the noise floor for both SC sources and 4 different exposure times. Each of the 500 noise floors is a readout of the spectrometer, processed with dark signal and background subtraction, normalization, re-sampling, windowing and finally subject to a FT. When varying the exposure time the signal is kept at a similar level on the camera corresponding to 50 % of the dynamic range (~2000 counts). A few pixels from the noise floor of Fig. 3(b) are discarded, at an axial position of 180 µm, as they correspond to interference between the fiber end reflection in the sample arm and the reference.

A first observation is that the two groups of curves in Fig. 3(b), for the QS-SC and the ML-SC are separated by around 20 dB. In the case of the ML-SC, due to the averaging over a high number of pulses, the system is within the shot noise limited regime at around 100 µs (no improvement is seen in the noise floor from 100 µs to 150 µs exposure time). For the QS-SC, the larger the exposure time the lower the noise floor, suggesting that there is an influence of RIN in the OCT system. This initial observation is confirmed by the sensitivity plots presented in Fig. 3(c). The two groups of curves show a sensitivity difference of 20 dB, which might seem important, especially considering the higher RIN of the ML-SC compared to the QS-SC. But again, the large difference in pulses per readout between the two sources gives the advantage to the ML-SC source when considering OCT applications. Using the sensitivity formula in [10], theoretical shot noise limited sensitivity values of 100, 103, 107, and 109 dB are obtained for exposure times of 20, 40, 100, and 150 µs, respectively, for 4 mW power on the sample. These values assume a coupling back into the fiber of 70 % of the light returning from the sample and a spectrometer efficiency of 80 % (estimated, as we use a commercial spectrometer). The 100 and 150 µs exposure time cases for the ML-SC source are close to the theoretical sensitivity shot noise limited values as expected. The QS-SC sensitivity curves lie 20-25 dB below the shot noise limited regime. An extrapolation of the obtained data suggests that a shot noise limited regime could be foreseen with the QS-SC for an exposure time of around 600 µs. However, a too long exposure time clearly impairs the system framerate. It is noticeable that the 150 µs QS-SC lies only a few dBs below the 20 µs ML-SC case. At 20 µs exposure time the camera line rate is around 40 kHz which is a common readout speed reported in recent literature using InGaAs line-scan camera [11].

Figure 4 displays a set of eight images (B-scan). Each B-scan is a 1 mm (depth) x 2.4 mm (lateral) area made of 500 A-scans with a power on sample of 1.3 mW. All B-scans are displayed using identical black and white levels to encode the dB values into a grayscale. When the shortest exposure time of 20 µs is used, the quality of the B-scans obtained with the Q-switched based SC source is poor, with a low SNR. Vertical black stripes appear due to the fact that the camera is at a line-rate of 4.17 kHz corresponding to twice the repetition rate of the source. The black stripes represent readouts without any optical pulse. If the exposure time is raised to 40 µs, then the mismatch between source pulse and camera read out is still present but the image quality improves, with clear structural information distinguishable. Finally, when the exposure time is increased to 100 µs or 150 µs, both sources deliver good final image quality with similar axial resolutions and identical distinguishable structural information.

A difference in the background darkness can be observed, on the top part of the images, with advantage for the ML-SC as expected from the noise floor measurements and sensitivity curves. The difference in background darkness affects the visual contrast of images. The Michelson contrast C can be computed as $C = (I_{\text{max}} - I_{\text{min}}) / (I_{\text{max}} + I_{\text{min}})$, where I is the intensity signal of each pixel within the image, and where I_{max} and I_{min} are calculated as an average of the 50 first highest and respectively 50 first lowest intensity pixels within the image. The values obtained for the contrast for the B-scans confirmed that the difference between B-scans from each SC is rather small. Indeed, the Michelson contrast varies, at maximum from 0.44 for the QS-SC based B-scan to 0.6 for the ML-SC based B-scan. This variation corresponds to a 25 % drop of contrast. Also to be considered, increasing the exposure time, to 150 µs or higher, could average the RIN arising from the source and then help improve SNR. However, it also increases the...
likelihood of saturation of the camera (vertical white stripes) and the occurrence of disturbing events in the image due to autocorrelation terms.

So far, we have tested the QS-SC for NDI UHR-OCT. However, biomedical application is the main target for OCT. Figures 5 and 6 are examples of skin images acquired in-vivo from the hand palm of a healthy volunteer using 4 mW on the sample. The volume dimensions are 500 (A-scans) by 500 (B-scans) by 1024 (depth). These are acquired in 37.5 s for the longest exposure time (150 µs) considered. This time is too long for imaging to be applied to samples in motion, as it is the case with imaging the eye, heart or even skin. For such long exposures, motion correction processing would be required before any volume averaging or any other advanced processing. Using the shortest exposure time of 20 µs, a volume acquisition can be finalized in 5 s, this is however still long for biomedical imaging of organs. Here, to compensate for eventual movement in x and y direction, we have used a handheld probe, which is in contact with the sample except for a small aperture reserved for the optical beam scanning. This restricts the motion along the depth direction only, as the sample is maintained stationary in respect to the x and y directions. Then, the remaining motion in the z-direction can be compensated through conventional algorithms [12], if further volume processing would be considered.

In terms of image quality, conclusions can be drawn similar to those from imaging the IR card above. Figures 5 and 6 confirm that 20 µs and 40 µs are too short exposure times and during such intervals the number of pulses is less than one. As soon as there are a few more pulses per readout, the QS-SC reaches similar image quality compared to the ML-SC. A difference of 20 % is obtained in the contrast. In the case of the "en-face" display of Figure 6, the problem of black stripes due to readouts containing no pulses is very important. The images acquired at 20 µs and 40 µs show almost no structural information.

In this study, we demonstrated that a QS-SC can be used for UHR-OCT at 1300 nm. Even though the repetition rate of this source is in the kHz regime, a small increase in the exposure time of the camera can lead to an image quality comparable to state of the art systems. Differences in contrast are observed to be quite low (~20 % less than more standard ML-SC sources). In-vivo images of skin were also demonstrated, though it is important to consider that the long exposure time (seconds to tens of seconds for volume acquisition) demands tracking or compensation procedures. An important advantage of the QS-SC is its lower cost, only 10-15 % of that of the ML-SC conventionally used in UHR-OCT. In addition to the demonstrated operation in the 1300 nm range, the QS-SC source is suitable for operation either at shorter wavelengths (800 nm range) or even at longer wavelengths (1700 nm, 2000 nm range).

Funding. MM, TF, PM, LL, and AP acknowledge support from the European Industrial Doctorate UBAFODESA, FP7-PEOPLE-2013-ITN 607627. IB and OB acknowledge support from the Danish Council for Independent Research grant LOISE (4184-00532B) and Innovation Fund Denmark grant ShapeOCT (4107-00011B). This project has received funding from the European Union’s Horizon 2020 grant GALAHAD (732613). AP acknowledges the support of the ERC (http://erc.europa.eu) AdaSmartRes 754695. AP is also supported by the NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and the UCL Institute of Ophthalmology and the Royal Society Wolfson Research Merit Award.

References

References