A micromechanical model of fiber bridging including effects of large deflections and fracture in the bridging fibers

Jørgensen, Jens Kjær; Grytten, Frode; Sørensen, Bent F.; Goutianos, Stergios; Joki, Reidar Kvale

Publication date: 2018

Document Version Peer reviewed version

A micromechanical model of fiber bridging including effects of large deflections and fracture in the bridging fibers

Jens Kjær Jørgensena, Frode Gryttena, Bent F. Sørensenb, Stergios Goutianosb, Reidar Kvale Jokic.

aSINTEF Industry, Department of Materials and Nanotechnology, PB 124 Blindern, NO-0314 Oslo, Norway
bComposite Mechanics and Structures Section, Department of Wind Energy, The Technical University of Denmark, Risø Campus, 4000 Roskilde, Denmark
cFiReCo AS, Storgata 15, NO-1607 Fredrikstad, Norway

Abstract

A micromechanical model of crossover fiber bridging is developed for the prediction of macroscopic mixed mode bridging laws (traction-separation laws). The model is based on moderately large deflection beam theory and takes fracture of the bridging ligament into account through a Weibull distributed failure strain.