Modelling Railway-Induced Passenger Delays in Multi-Modal Public Transport Networks: An Agent-Based Copenhagen Case Study Using Empirical Train Delay Data

Mads Paulsen, Thomas Kjær Rasmussen & Otto Anker Nielsen

Division of Transport Modelling, DTU Management Engineering, Technical University of Denmark

July 25, 2018
Outline

1. Motivation
2. Literature
3. Methodology
4. Case Study & Results
5. Conclusions & Future Work
Outline

1. Motivation
 - Relevance
 - Problem Definition
2. Literature
3. Methodology
4. Case Study & Results
5. Conclusions & Future Work
Railway Reliability

What to Measure?

- Public transport operators are generally evaluated on vehicle reliability and punctuality – not passenger punctuality.
 - Sooo easy to measure...

- Some research on passenger perspectives in timetabling *(Schoebel, 2018)*.
 - Very hard to solve.

“If a tree falls in the forest, and no one is around to hear it, does it still make a sound?”
"If a train is delayed, and no one is around to be delayed, does it still matter?"
“If a train is delayed, and no one is around to be delayed, does it still matter?”

- Public transport system should be judged by its passengers delays – not vehicle delays.
- A consistent method for determination of passenger delays is needed.
Passenger Delays: What’s the Deal?

- Vehicle delay information have become widely available through Automated Vehicle Location (AVL) data.
- Passenger delays are difficult to measure.
 - Not just a sum of vehicle delays... (except for last trip segment).
Passenger Delays: What’s the Deal?

- Passenger delays increase when missing a connection...
 - ... or catching an earlier connection (negative delay).
- I.e. transfers plays an integral role.
Passenger Delays: What’s the Deal?

- Possible transfers are numerous...
Aim

Establish a Model That Can:

- Infer door-to-door passenger delays from vehicle delays:
 - At a large scale.
 - In multi-modal networks.
Outline

1 Motivation

2 Literature
 - Traditional Passenger Delay Models
 - Personal Data Models
 - Contribution

3 Methodology

4 Case Study & Results

5 Conclusions & Future Work
Traditional Passenger Delay Models

Hickman and Bernstein, 1997
- Proposes 4 principles of adaptive passenger route choice.
- Applied to a toy network.

Nielsen et al., 2009
- A model with full adaptive route choices, corresponding to the most advanced principle of Hickman and Bernstein, 1997.
- Applied to realised delays of suburban train network of Copenhagen.

Models Using Personal Data

Smartphone Location Data
- Carrel et al., 2015*
 - Combined with AVL data.
 - Data rarely made available due to privacy issues.

Tap-In, Tap-Out Data (AFC)
- E.g. Antos and Eichler, 2016†
 - Only available for closed systems.
 - Station-to-station.

* Carrel, Andre, Lau, Peter S.C., Mishalani, Rabi G, Sengupta, Raja, and Walker, Joan L (2015). “Quantifying transit travel experiences from the users’ perspective with high-resolution smartphone and vehicle location data: Methodologies, validation, and example analyses”. In: Transportation Research Part C: Emerging Technologies 58, pp. 224–239

† Antos, Justin and Eichler, Michael D. (2016). “Tapping into Delay: Assessing Rail Transit Passenger Delay With Data from a Tap-In, Tap-Out Fare System”. In: Transportation Research Record: Journal of the Transportation Research Board 2540.May, pp. 76–83
What’s Missing?

Contribution

- Door-to-door passenger delays.
- Combining:
 - Readily available AVL data.
 - Easily transferable to other cities.
 - Multi-modal network.
 - Larger variety of transfer types.
Outline

1. Motivation
2. Literature
3. Methodology
 - MATSim
 - Framework
 - Levels of Adaptiveness
4. Case Study & Results
5. Conclusions & Future Work
The Multi-Agent Transport Simulation MATSim

MATSim*
- Open source.
- Agent-based.
- Door-to-door.
- Activity-based.
- Large-scale applicable.
- Scenarios around the world.

A PT leg consists of a series of stops.
Connected by either walking or PT.
First feasible PT vehicle is used.

The plan can be altered between iterations based on performance of previous iteration.

- Waiting time penalised 1.6 times harder.
- Additional transfer penalty of 6 regular minutes.
Framework

- Base Scenario (Planned Timetable)
- Intended Routes
- Realised Timetables
 - Realised Routes
 - Realised Routes
 - Realised Routes
- Levels of Adaptiveness
 - Non-Adaptive
 - Semi-Adaptive
 - Full-Adaptive
- Passenger Delays
 - Passenger Delays
 - Passenger Delays
Levels of Adaptiveness: Why?

What Do Passengers Do?

- Do they...
 - ... stick to their intended route?
 - ... rely on real-time traffic information and minimise their travel time?
 - .. a trade-off between the two?
Levels of Adaptiveness: Which?

We propose three strategies:

- **Non-Adaptive**
- **Semi-Adaptive**
- **Full-Adaptive**
Levels of Adaptiveness: The Non-Adaptive

- Conservative, upper bound estimate.
- No information passed on to passengers.
- No flexibility in stop pattern.
Levels of Adaptiveness: The Semi-Adaptive

Semi-Adaptive

- Compromise estimate.
- Full information gained when reaching first stop.
- First stop fixed, the rest are flexible.
Levels of Adaptiveness: The Full-Adaptive

- Optimistic, lower bound estimate.
- Full information gained when at start of leg.
- Full stop pattern flexibility.
Algorithm

1: Create the planned timetable, S^p.
2: Run MATSim with the events-based public transport router extension (Ordóñez, 2016) using S^p to get the intended travel times, t^I_T, for all trips, $T \in T$.
3: Create realised timetables, T^R_D, for all historical weekdays, $D \in D$.
4: for all days, $D \in D$ do
5: for all levels of adaptiveness, $A \in A$ do
6: Simulate D in MATSim using realised timetable, T^R_D, and intended routes from 2, while allowing adaptive choices of agents according to level of adaptiveness, A, to obtain corresponding realised travel times, t^{RA}_T, for all trips, $T \in T$.
7: for all trips, $T \in T$ do
8: Find the corresponding passenger delay of T, d^A_T, as the difference between the intended travel time from 2 and realised travel time from 6,
9: end for
10: end for
11: end for

$$d^A_T = t^{RA}_T - t^I_T.$$
Algorithm

1: Create the planned timetable, S^P.
2: Run MATSim with the events-based public transport router extension (Ordóñez, 2016) using S^P to get the intended travel times, t^I_T, for all trips, $T \in \mathcal{T}$.
3: Create realised timetables, T^R_D, for all historical weekdays, $D \in \mathcal{D}$.
4: for all days, $D \in \mathcal{D}$ do
5: for all levels of adaptiveness, $A \in \mathcal{A}$ do
6: Simulate D in MATSim using realised timetable, T^R_D, and intended routes from 2, while allowing adaptive choices of agents according to level of adaptiveness, A, to obtain corresponding realised travel times, t^{RA}_T, for all trips, $T \in \mathcal{T}$.
7: for all trips, $T \in \mathcal{T}$ do
8: Find the corresponding passenger delay of T, d^A_T, as the difference between the intended travel time from 2 and realised travel time from 6,
$$d^A_T = t^{RA}_T - t^I_T. \quad (1)$$
9: end for
10: end for
11: end for
Outline

1. Motivation
2. Literature
3. Methodology
4. Case Study & Results
 - Case Study
 - Results
5. Conclusions & Future Work
Delay Data

- Delay data was provided by the national railway infrastructure manager, Rail Net Denmark.
- All 65 weekdays of the autumn of 2014.
- All railway lines except metro and small privately owned local lines.

<table>
<thead>
<tr>
<th>September 2014</th>
<th>October 2014</th>
<th>November 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon
1
8
15
22
29</td>
<td>Mon
1
6
13
20
27</td>
<td>Mon
3
10
17
24
31</td>
</tr>
<tr>
<td>Tue
2
9
16
23
30</td>
<td>Tue
2
7
14
21
28</td>
<td>Tue
4
11
18
25
32</td>
</tr>
<tr>
<td>Wed
3
10
17
24
31</td>
<td>Wed
3
9
16
23
30</td>
<td>Wed
5
12
19
26
33</td>
</tr>
<tr>
<td>Thu
4
11
18
25
32</td>
<td>Thu
9
16
23
30
37</td>
<td>Thu
6
13
20
27
34</td>
</tr>
<tr>
<td>Fri
5
12
19
26
33</td>
<td>Fri
10
17
24
31
38</td>
<td>Fri
7
14
21
28
35</td>
</tr>
</tbody>
</table>
Model was applied to the metropolitan area of Copenhagen:

- All PT lines: Train, Metro, Bus.
- 1% population sample: 3,747 (2,272) agents, 7,889 (5,316) PT trips per day.
Aggregate Results

The diagram illustrates the CDF (Cumulative Distribution Function) of delay for different train systems:
- Trains
- Non-Adaptive
- Semi-Adaptive
- Full-Adaptive

The x-axis represents the delay in minutes, while the y-axis represents the CDF. The curves show the proportion of delays that are less than or equal to a given delay value.

The non-adaptive system has the highest CDF, indicating a higher proportion of delays, while the full-adaptive system has the lowest CDF, indicating fewer delays. This suggests that adaptive systems can reduce delays compared to non-adaptive systems.
Aggregate Results

<table>
<thead>
<tr>
<th></th>
<th>Non-Adaptive</th>
<th>Semi-Adaptive</th>
<th>Full-Adaptive</th>
<th>Trains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay ≤ -5 minutes [%]</td>
<td>2.1</td>
<td>6.3</td>
<td>8.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Delay ≤ -1 minute [%]</td>
<td>8.4</td>
<td>13.6</td>
<td>15.7</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>Delay</td>
<td>< 1 minute [%]</td>
<td>78.9</td>
<td>71.8</td>
</tr>
<tr>
<td>Delay ≥ 1 minute [%]</td>
<td>12.7</td>
<td>14.6</td>
<td>14.5</td>
<td>15.2</td>
</tr>
<tr>
<td>Delay ≥ 5 minutes [%]</td>
<td>5.3</td>
<td>6.9</td>
<td>6.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Average Delay [minutes]</td>
<td>0.49</td>
<td>-0.43</td>
<td>-0.78</td>
<td>0.28</td>
</tr>
<tr>
<td>SD of Delay [minutes]</td>
<td>5.80</td>
<td>19.18</td>
<td>20.06</td>
<td>2.82</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>333,804</td>
<td>333,757</td>
<td>333,686</td>
<td>2,362,880</td>
</tr>
</tbody>
</table>
Aggregate Results

<table>
<thead>
<tr>
<th></th>
<th>Non-Adaptive</th>
<th>Semi-Adaptive</th>
<th>Full-Adaptive</th>
<th>Trains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay ≤ -5 minutes [%]</td>
<td>2.1</td>
<td>6.3</td>
<td>8.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Delay ≤ -1 minute [%]</td>
<td>8.4</td>
<td>13.6</td>
<td>15.7</td>
<td>11.9</td>
</tr>
<tr>
<td>Delay</td>
<td><</td>
<td>1 minute [%]</td>
<td>78.9</td>
<td>71.8</td>
</tr>
<tr>
<td>Delay ≥ 1 minute [%]</td>
<td>12.7</td>
<td>14.6</td>
<td>14.5</td>
<td>15.2</td>
</tr>
<tr>
<td>Delay ≥ 5 minutes [%]</td>
<td>5.3</td>
<td>6.9</td>
<td>6.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Average Delay [minutes]</td>
<td>0.49</td>
<td>-0.43</td>
<td>-0.78</td>
<td>0.28</td>
</tr>
<tr>
<td>SD of Delay [minutes]</td>
<td>5.80</td>
<td>19.18</td>
<td>20.06</td>
<td>2.82</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>333,804</td>
<td>333,757</td>
<td>333,686</td>
<td>2,362,880</td>
</tr>
</tbody>
</table>
Aggregate Results

<table>
<thead>
<tr>
<th></th>
<th>Non-Adaptive</th>
<th>Passengers</th>
<th>Full-Adaptive</th>
<th>Trains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay ≤ -5 minutes [%]</td>
<td>2.1</td>
<td>6.3</td>
<td>8.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Delay ≤ -1 minute [%]</td>
<td>8.4</td>
<td>13.6</td>
<td>15.7</td>
<td>11.9</td>
</tr>
<tr>
<td>**</td>
<td>Delay</td>
<td>< 1 minute [%]**</td>
<td>78.9</td>
<td>71.8</td>
</tr>
<tr>
<td>Delay ≥ 1 minute [%]</td>
<td>12.7</td>
<td>14.6</td>
<td>14.5</td>
<td>15.2</td>
</tr>
<tr>
<td>Delay ≥ 5 minutes [%]</td>
<td>5.3</td>
<td>6.9</td>
<td>6.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Average Delay [minutes]</td>
<td>0.49</td>
<td>-0.43</td>
<td>-0.78</td>
<td>0.28</td>
</tr>
<tr>
<td>SD of Delay [minutes]</td>
<td>5.80</td>
<td>19.18</td>
<td>20.06</td>
<td>2.82</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>333,804</td>
<td>333,757</td>
<td>333,686</td>
<td>2,362,880</td>
</tr>
</tbody>
</table>
Aggregate Results

<table>
<thead>
<tr>
<th></th>
<th>Non-Adaptive</th>
<th>Passengers</th>
<th>Semi-Adaptive</th>
<th>Full-Adaptive</th>
<th>Trains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay ≤ -5 minutes [%]</td>
<td>2.1</td>
<td>6.3</td>
<td>8.2</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Delay ≤ -1 minute [%]</td>
<td>8.4</td>
<td>13.6</td>
<td>15.7</td>
<td></td>
<td>11.9</td>
</tr>
<tr>
<td>$</td>
<td>\text{Delay}</td>
<td>< 1$ minute [%]</td>
<td>78.9</td>
<td>71.8</td>
<td>69.8</td>
</tr>
<tr>
<td>Delay ≥ 1 minute [%]</td>
<td>12.7</td>
<td>14.6</td>
<td>14.5</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>Delay ≥ 5 minutes [%]</td>
<td>5.3</td>
<td>6.9</td>
<td>6.7</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Average Delay [minutes]</td>
<td>0.49</td>
<td>-0.43</td>
<td>-0.78</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>SD of Delay [minutes]</td>
<td>5.80</td>
<td>19.18</td>
<td>20.06</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td>Number of Observations</td>
<td>333,804</td>
<td>333,757</td>
<td>333,686</td>
<td>2,362,880</td>
<td></td>
</tr>
</tbody>
</table>

madsp@dtu.dk
Aggregate Results

<table>
<thead>
<tr>
<th></th>
<th>Non-Adaptive</th>
<th>Passengers</th>
<th>Semi-Adaptive</th>
<th>Full-Adaptive</th>
<th>Trains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay ≤ -5 minutes [%]</td>
<td>2.1</td>
<td>6.3</td>
<td>8.2</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Delay ≤ -1 minute [%]</td>
<td>8.4</td>
<td>13.6</td>
<td>15.7</td>
<td></td>
<td>11.9</td>
</tr>
<tr>
<td>Delay $</td>
<td><</td>
<td>1$ minute [%]</td>
<td>78.9</td>
<td>71.8</td>
<td>69.8</td>
</tr>
<tr>
<td>Delay ≥ 1 minute [%]</td>
<td>12.7</td>
<td>14.6</td>
<td>14.5</td>
<td></td>
<td>15.2</td>
</tr>
<tr>
<td>Delay ≥ 5 minutes [%]</td>
<td>5.3</td>
<td>6.9</td>
<td>6.7</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Average Delay [minutes]</td>
<td>0.49</td>
<td>-0.43</td>
<td>-0.78</td>
<td></td>
<td>0.28</td>
</tr>
<tr>
<td>SD of Delay [minutes]</td>
<td>5.80</td>
<td>19.18</td>
<td>20.06</td>
<td></td>
<td>2.82</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>333,804</td>
<td>333,757</td>
<td>333,686</td>
<td>2,362,880</td>
<td></td>
</tr>
</tbody>
</table>
Break-Even Points

Survival Function

Time [minutes]

0.6
0.5
0.4
0.3
0.2
0.1
0.0

0
1
2
3
4
5

Train Delays
Train Savings
Non-Adaptive Delays
Non-Adaptive Savings
Semi-Adaptive Delays
Semi-Adaptive Savings
Full-Adaptive Delays
Full-Adaptive Savings

madsp@dtu.dk
Break-Even Points

- Train Delays
- Train Savings
- Non-Adaptive Delays
- Non-Adaptive Savings
- Semi-Adaptive Delays
- Semi-Adaptive Savings
- Full-Adaptive Delays
- Full-Adaptive Savings

Survival Function vs. Time [minutes]
Break-Even Points

Graph showing the survival function over time for different delay and savings scenarios.
Day-to-Day Variations

Case Study & Results
Conclusions & Future Work

Outline

1. Motivation
2. Literature
3. Methodology
4. Case Study & Results
5. Conclusions & Future Work
 - Discussion
 - Future Work
 - Conclusions
Nielsen et al., 2009*

- ~ 15% of passengers are delayed by at least one minute.
- The adaptive strategies showed a similar proportion of passengers saving time (~ 18%).
- Magnitude of passenger delays exceeds train delays.

Non-Adaptive as Subset of Adaptive

- Large delays are most likely for adaptive strategies.
 - Optimised with respect to generalised travel cost.
 - Optimised with respect to entire day plans.

![Graph showing survival function and train delays and savings for different strategies: Non-Adaptive, Semi-Adaptive, Full-Adaptive delays and savings.](image)
Realised vs Planned Operations

- Realised outperforms planned.
 - If agents can obtain and react on such information.
 - Ignores robustness.
- Supported by e.g. Fonseca et al., 2018*.
 - Excess waiting time between trains and buses can be reduced by 2 minutes.

madsp@dtu.dk
Future Work

Extensions
- Include AVL data from buses.
- Use larger population sample (10%).

Further Analysis
- Spatial analysis.
 - Which parts of the network are most vulnerable?
Findings

- Passenger delays were modelled for 65 weekdays in Copenhagen using three levels of adaptiveness.
- Passengers delays vary more than train delays.
- Small time savings are more likely than small delays.
 - Opposite is generally true when magnitude increases.
Conclusions & Future Work

Conclusions

Implications

- The adaptive strategy generally saves time.
 - Realised operations are better for passengers than the planned.
- Model may be used to evaluate timetable performance.
 - Suggests room for improvements concerning transfer times.
Thank You for Your Attention

Modelling Railway-Induced Passenger Delays in Multi-Modal Public Transport Networks:
An Agent-Based Copenhagen Case Study
Using Empirical Train Delay Data

Mads Paulsen, Thomas Kjær Rasmussen & Otto Anker Nielsen

Division of Transport Modelling,
DTU Management Engineering,
Technical University of Denmark

madsp@dtu.dk
Antos, Justin and Eichler, Michael D. (2016). “Tapping into Delay: Assessing Rail Transit Passenger Delay With Data from a Tap-In, Tap-Out Fare System”. In: Transportation Research Record: Journal of the Transportation Research Board 2540. May, pp. 76–83.

Carrel, Andre, Lau, Peter S.C., Mishalani, Rabi G, Sengupta, Raja, and Walker, Joan L (2015). “Quantifying transit travel experiences from the users’ perspective with high-resolution smartphone and vehicle location data: Methodologies, validation, and example analyses”. In: Transportation Research Part C: Emerging Technologies 58, pp. 224–239.

A PT leg consists of a series of stops. Connected by either walking or PT. First feasible PT vehicle is used.

The plan can be altered between iterations based on performance of previous iteration. Waiting time penalised 1.6 times harder. Additional transfer penalty of 6 regular minutes.
