Output Variability Caused by Random Seeds in a Multi-Agent Transport Simulation Model

7th International Workshop on Agent-based Mobility, Traffic and Transportation Models, Methodologies and Applications

Mads Paulsen, Thomas Kjær Rasmussen & Otto Anker Nielsen

Division of Transport Modelling,
DTU Management Engineering,
Technical University of Denmark

May 10, 2018
Random Seeds

- Normally random seeds do not receive much attention.

- But should they?
Motivation

- Transport model outputs are fundamental for policy support.
- Their results need to be trustworthy.
 - Do random numbers hinder this?
Outline

1. Literature Review
2. Methodology
3. Case Study & Results
4. Conclusions & Future Work
1 Literature Review
2 Methodology
3 Case Study & Results
4 Conclusions & Future Work
Literature Review

Selected Studies

Nagel, 1997
- Two seeds.
- TRANSims.
- Solely observes difference.

Castiglione et al., 2003
- 100 seeds.
- San Francisco model.
- Use partial means, and thus incomparable.

Cools et al., 2011
- 200 seeds.
- FEATHERS.
- Trip level: $C.V.'s \lesssim 1\%$.

† Castiglione, Joe, Freedman, Joel, and Bradley, Mark (2003). “Systematic Investigation of Variability due to Random Simulation Error in an Activity-Based Microsimulation Forecasting Model”. In: Transportation Research Record: Journal of the Transportation Research Board 1831, pp. 76–88

More or less consensus in the literature that the Monte Carlo variability is a non-issue for link loads.

- Aditionally backed up by Veldhuisen et al., 2000*, Lawe et al., 2009† and Ziems et al., 2011‡.

† Lawe, Stephen, Lobb, John, Sadek, Adel, Huang, Shan, and Xie, Chi (2009). “TRANSIMS Implementation in Chittenden County, Vermont”. In: Transportation Research Record: Journal of the Transportation Research Board 2132, pp. 113–121.

A Very Similar Study...

Horni et al., 2011 *

- Discovered after final submission deadline.
 - Thus not referenced in the proceedings paper.
- Actual study on MATSim.
- 30 random seeds.
- Link load average $C.V. \approx 4\%$.

What’s Missing?

Contributions

- Compare between-seed variation to within-seed variation.
- Analyse each seed separately.
- Larger dataset for link load analysis (network and number of seeds).
Outline

1. Literature Review
2. Methodology
 - MATSim
 - Experiment Design
3. Case Study & Results
4. Conclusions & Future Work
Methodology

The Multi-Agent Transport Simulation MATSim

MATSim
- Agent-based.
- Activity-based.
- Large-scale applicable.
- Scenarios around the world.
- Open source.

How Are Random Numbers Used in MATSim?

Used to Determine *which*...

- ... in-going links of a node to be handled first.
- ... agents use *which*...
 - ... plan mutation strategy.
 - ... plan selection strategy.
- ... plan an agent choose (from choice set).

For choosing between reasonable alternatives.
- MATSim ought note to be particularly prone to high output variability.
100 runs (100 different random seeds).
100 iterations in each run.
A total of $100 \times 100 \times |L|$ link loads produced.
$x_{i}^{s,i}$ is daily link load on link l in iteration i with seed s.

<table>
<thead>
<tr>
<th>Seed 1</th>
<th>lt. 1</th>
<th>lt. 2</th>
<th>\cdots</th>
<th>lt. 98</th>
<th>lt. 99</th>
<th>lt. 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{1}^{1,1}$</td>
<td>$x_{1}^{1,2}$</td>
<td>\cdots</td>
<td>$x_{1}^{1,98}$</td>
<td>$x_{1}^{1,99}$</td>
<td>$x_{1}^{1,100}$</td>
<td></td>
</tr>
<tr>
<td>$x_{1}^{2,1}$</td>
<td>$x_{1}^{2,2}$</td>
<td>\cdots</td>
<td>$x_{1}^{2,98}$</td>
<td>$x_{1}^{2,99}$</td>
<td>$x_{1}^{2,100}$</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>Seed 99</td>
<td>$x_{l}^{99,1}$</td>
<td>$x_{l}^{99,2}$</td>
<td>\cdots</td>
<td>$x_{l}^{99,98}$</td>
<td>$x_{l}^{99,99}$</td>
<td>$x_{l}^{99,100}$</td>
</tr>
<tr>
<td>Seed 100</td>
<td>$x_{l}^{100,1}$</td>
<td>$x_{l}^{100,2}$</td>
<td>\cdots</td>
<td>$x_{l}^{100,98}$</td>
<td>$x_{l}^{100,99}$</td>
<td>$x_{l}^{100,100}$</td>
</tr>
</tbody>
</table>
Experiment Design

- 100 runs (100 different random seeds).
- 100 iterations in each run.
- A total of $100 \times 100 \times |L|$ link loads produced.
- $x_{l,s,i}^{s,i}$ is daily link load on link l in iteration i with seed s.

<table>
<thead>
<tr>
<th>Seed 1</th>
<th>It. 1</th>
<th>It. 2</th>
<th>...</th>
<th>It. 98</th>
<th>It. 99</th>
<th>It. 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{l,1}^{1,1}$</td>
<td>$x_{l,2}^{1,2}$</td>
<td>...</td>
<td>$x_{l,98}^{1,98}$</td>
<td>$x_{l,99}^{1,99}$</td>
<td>$x_{l,100}^{1,100}$</td>
<td></td>
</tr>
<tr>
<td>Seed 2</td>
<td>$x_{l,2,1}^{2,1}$</td>
<td>$x_{l,2,2}^{2,2}$</td>
<td>...</td>
<td>$x_{l,98}^{2,98}$</td>
<td>$x_{l,99}^{2,99}$</td>
<td>$x_{l,100}^{2,100}$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Seed 99</td>
<td>$x_{l,99,1}^{99,1}$</td>
<td>$x_{l,99,2}^{99,2}$</td>
<td>...</td>
<td>$x_{l,99,98}^{99,98}$</td>
<td>$x_{l,99,99}^{99,99}$</td>
<td>$x_{l,100,100}^{99,100}$</td>
</tr>
<tr>
<td>Seed 100</td>
<td>$x_{l,100,1}^{100,1}$</td>
<td>$x_{l,100,2}^{100,2}$</td>
<td>...</td>
<td>$x_{l,100,98}^{100,98}$</td>
<td>$x_{l,100,99}^{100,99}$</td>
<td>$x_{l,100,100}^{100,100}$</td>
</tr>
</tbody>
</table>

- We (primarily) use those from the last iteration.
Our initial analysis measure is the coefficient of variation,

\[c_{vl}^{\chi_l} = \frac{\text{Standard Deviation}}{\text{Mean}} = \sqrt{\frac{1}{|S| - 1} \sum_{s \in S} \left(x_{l,s,100}^{s} - \bar{x}_l \right)^2} \]

\[= \frac{\sum_{s \in S} x_{l,s,100}}{|S|}, \quad l \in L. \]

With \(\bar{x}_l \) being the mean link load of link \(l \in L \),

\[\bar{x}_l = \frac{\sum_{s \in S} x_{l,s,100}}{|S|}, \quad l \in L. \]
Measures II – Proportions

- We introduce additional measures:
 - Proportion of links that deviate more than $q \cdot 100\%$ from their mean when using seed $s \in S$,
 \[
 r^s_q = \frac{\sum_{l \in L} \left[\left| \frac{x^{s,100}_l - \bar{x}_l}{\bar{x}_l} \right| > q \right]}{|L|}, \quad s \in S, \; q > 0.
 \]
 - Proportion of seeds in which the link load of link $l \in L$ deviates more than $q \cdot 100\%$ from the mean,
 \[
 r^l_q = \frac{\sum_{s \in S} \left[\left| \frac{x^{s,100}_l - \bar{x}_l}{\bar{x}_l} \right| > q \right]}{|S|}, \quad l \in L, \; q \geq 0.
 \]
Finally, we introduce two auxiliary measures:

- Between-seed variation:
 \[
 B_l = \frac{1}{|S| - 1} \sum_{s \in S} \left(x_{l,100}^s - \bar{x}_l \right)^2 , \quad l \in L.
 \]

- Within-seed variation:
 \[
 W_l = \frac{1}{|S|} \sum_{s \in S} \left(x_{l,99}^s - x_{l,100}^s \right)^2 , \quad l \in L.
 \]
Measures IIIb – Between-Seed vs Within-Seed Variation

Between-seed mean

<table>
<thead>
<tr>
<th></th>
<th>lt. 1</th>
<th>⋯</th>
<th>lt. 99</th>
<th>lt. 100</th>
<th>Between-seed mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed 1</td>
<td>$x_{i}^{1,1}$</td>
<td>⋯</td>
<td>$x_{i}^{1,99}$</td>
<td>($x_{i}^{1,100} - \bar{x}_i$) 2</td>
<td></td>
</tr>
<tr>
<td>Seed 99</td>
<td>$x_{i}^{99,1}$</td>
<td>⋯</td>
<td>$x_{i}^{99,99}$</td>
<td>($x_{i}^{99,100} - \bar{x}_i$) 2</td>
<td></td>
</tr>
<tr>
<td>Seed 100</td>
<td>$x_{i}^{100,1}$</td>
<td>⋯</td>
<td>$x_{i}^{100,99}$</td>
<td>($x_{i}^{100,100} - \bar{x}_i$) 2</td>
<td></td>
</tr>
</tbody>
</table>

Within-seed mean

<table>
<thead>
<tr>
<th></th>
<th>lt. 1</th>
<th>⋯</th>
<th>lt. 98</th>
<th>lt. 99</th>
<th>lt. 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed 1</td>
<td>$x_{i}^{1,1}$</td>
<td>⋯</td>
<td>$x_{i}^{1,98}$</td>
<td>($x_{i}^{1,99} - x_{i}^{1,100}$) 2</td>
<td></td>
</tr>
<tr>
<td>Seed 99</td>
<td>$x_{i}^{99,1}$</td>
<td>⋯</td>
<td>$x_{i}^{99,98}$</td>
<td>($x_{i}^{99,99} - x_{i}^{99,100}$) 2</td>
<td></td>
</tr>
<tr>
<td>Seed 100</td>
<td>$x_{i}^{100,1}$</td>
<td>⋯</td>
<td>$x_{i}^{100,98}$</td>
<td>($x_{i}^{100,99} - x_{i}^{100,100}$) 2</td>
<td></td>
</tr>
</tbody>
</table>
These allow calculating the importance of the between-seed variation,

\[\tilde{R}_l = \sqrt{\frac{B_l + W_l}{W_l}}, \quad l \in L. \]

- \(\tilde{R}_l \rightarrow 1 \) \(\Rightarrow \) Not important.
- \(\tilde{R}_l = \sqrt{2} \) \(\Rightarrow \) Equally important.
- \(\tilde{R}_l \gg \sqrt{2} \) \(\Rightarrow \) Strongly dominates the within seed-variation.

Thus, \(\tilde{R}_l \) can indicate whether it is better to...

- ... run more iterations (low \(\tilde{R}_l \)) or
- ... run more seeds (high \(\tilde{R}_l \)).
Outline

1. Literature Review
2. Methodology
3. Case Study & Results
 - Case Study
 - Results
4. Conclusions & Future Work
Case Study

Santiago de Chile Open Data Scenario v2b*

- 10% Population Sample: 665,201 agents.
- 22,981 link network.
- Schedule based public transport.

Default “Out-of-the-Box” Configurations

- Mode choice: Walk, public transport, car.
- 100 iterations.
- After 80 iterations:
 - Choice sets are locked.
 - Plan level MSA initialised.

Coefficients of Variation: All links.

- Generally not high – somewhat in accordance with earlier studies.
 - 2/3 of links have a coefficient of variation $\leq 5\%$.
 - $\sim 15\%$ of links have a coefficient of variation $> 10\%$.

\[
c_{V}^{x_l} = \sqrt{\frac{1}{|S|-1} \sum_{s \in S} \left(x_{l,s,100} - \bar{x}_l \right)^2} , \quad l \in L.
\]
The 50 busiest links seem more stable.

- Coefficient of variation \(\approx 1\% \).
Are Some Seeds Worse than Others?

- All seeds perform more or less equally well.
 - ... i.e. 42 will do just fine.

\[
 r^s_q = \frac{\sum_{l \in L} \left(\frac{|x_l^{s,100} - \bar{x}_l|}{\bar{x}_l} > q \right)}{|L|}, \quad s \in S, \ q > 0.
\]

<table>
<thead>
<tr>
<th>q</th>
<th>1%</th>
<th>2.5%</th>
<th>5%</th>
<th>10%</th>
<th>15%</th>
<th>25%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>66.28%</td>
<td>42.16%</td>
<td>23.08%</td>
<td>10.19%</td>
<td>6.02%</td>
<td>3.18%</td>
<td>1.49%</td>
</tr>
<tr>
<td>SD</td>
<td>0.65%</td>
<td>0.70%</td>
<td>0.52%</td>
<td>0.33%</td>
<td>0.21%</td>
<td>0.13%</td>
<td>0.06%</td>
</tr>
</tbody>
</table>
How Often Does It Go Wrong? I

- ~20% of links have a relative error of \(\geq 5\% \) for \(\geq 50\% \) of the seeds.
- ~10% of links have a relative error of \(\geq 15\% \) for \(\geq 20\% \) of the seeds.

\[
\begin{align*}
\text{CDF}(r_q) = \sum_{s \in S} \left[\frac{\left|x_l^{s,100} - \bar{x}_l\right|}{\bar{x}_l} > q \right] / |S|, \quad l \in L, \quad q \geq 0.
\end{align*}
\]
How Often Does It Go Wrong? II

- Generally worst for the smallest links.
 - However, many busy links are quite volatile.

\[
q = 1%
\]
Practically all links have $\tilde{R}_I \geq 4$.

- Between seed-variation dominates within seed-variation.
- Despite only using 100 iterations.

$$\tilde{R}_I = \sqrt{\frac{B_I + W_I}{W_I}}, \quad I \in L.$$
Problem intensifies for busiest links.

\[
\tilde{R}_l = \sqrt{\frac{B_l + W_l}{W_l}}, \quad l \in L.
\]
Conclusions & Future Work

Outline

1. Literature Review
2. Methodology
3. Case Study & Results
4. Conclusions & Future Work
 - Conclusions
 - Future Work
Conclusions & Future Work

Conclusions

Findings

- Coefficient of variation is generally low, and a decreasing function of link load.
- Large relative errors do happen – also for the busiest links.
- No bad seeds.
- Between-seed variation is much larger than within-seed variation.

Future Work
Conclusions & Future Work

Conclusions II

How to Deal with It?

- Use multiple seeds.
 - May be better to run 10×100 iterations than $1 \times 1,000$.

- Average out results across all seeds.
 - But point estimates may not correspond to an actual solution.

- Present results as a distribution.
 - As suggested in Chapter 48* of the MATSim book.
 - Contributes to deeper understanding of uncertainties.

Future Work

Spatial Analysis
- Current study ignores spatial interdependencies.
 - Visual overview.
 - Actual geostatistical analysis (e.g. Kriging).

Network Sensitivity
- Sensitivity to small changes in the network.
 - Does the output variability overshadow the effects of infrastructural changes?
 - Extremely relevant for scenario analysis.
Thank You for Your Attention

Output Variability Caused by Random Seeds in a Multi-Agent Transport Simulation Model

7th International Workshop on Agent-based Mobility, Traffic and Transportation Models, Methodologies and Applications

Mads Paulsen, Thomas Kjær Rasmussen & Otto Anker Nielsen

Division of Transport Modelling, DTU Management Engineering, Technical University of Denmark

madsp@dtu.dk

Lawe, Stephen, Lobb, John, Sadek, Adel, Huang, Shan, and Xie, Chi (2009). “TRANSIMS Implementation in Chittenden County, Vermont”. In: Transportation Research Record: Journal of the Transportation Research Board 2132, pp. 113–121.

Random Number Generation in MATSim?

Linear Congruential Generator (LCG)

Pseudo random numbers are constructed in MATSim using Java’s default LCG with minor modifications,

$$X_{n+1} = aX_n + c \mod m.$$

- $X_n =$ latest draw.
- $X_{n+1} =$ next draw.
- $a = 25, 214, 903, 917.$
- $c = 11.$
- $m = 2^{48}.$

In order to get a uniformly distributed number X_{n+1} is divided by $m.$