High Pressure Rheological Behavior of 1-Ethyl-3-methylimidazolium n-Hexylsulfate and Trihexyl(tetradecyl)phosphonium Tris(pentafluoroethyl)trifluorophosphate

Regueira, Teresa; Lugo, Luis; Comuñas, María J. P.; Fernández, Josefa

Published in:
Journal of Chemical and Engineering Data

Link to article, DOI:
10.1021/acs.jced.7b00181

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
High pressure rheological behaviour of 1-ethyl-3-methylimidazolium n-hexylsulfate and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate

Teresa Regueira¹,², Luis Lugo³, María J.P. Comuñas¹, Josefa Fernández¹,*

¹Laboratorio de Propiedades Termofísicas, Grupo NaFoMat, Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
²Center for Energy Resources Engineering (CERE), Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
³Departamento de Física Aplicada, Facultade de Ciencias, Universidade de Vigo, E-36310 Vigo, Spain

*Corresponding author. Tel.: +34 881814046; fax: +34 881814112

E-mail address: josefa.fernandez@usc.es (J. Fernández).
Abstract

Ionic liquids have been broadly studied in the last decade for being used as lubricants or lubricant additives. The rheological characterization of these fluids is very important in this context because it determines to a great extent their performance for different lubricants applications, such as hydraulic or gear lubricants. Thus, in this work we have performed the rheometric characterization of two ionic liquids (ILs), 1-ethyl-3-methylimidazolium n-hexylsulfate and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate, in the temperature range from 298.15 K to 353.15 K up to 75 MPa and shear rates up to 1000 s\(^{-1}\). For this aim, the setup of a new device for rheological characterization at high pressure based on Couette flow and concentric cylinders was undertaken in this work. Moreover the pressure-viscosity and temperature-viscosity coefficients of these ILs have been calculated. Both ILs present Newtonian behaviour in the studied conditions. The trifluorophosphate IL has strong pressure-viscosity dependence whereas for the other IL this dependence is quite slight.

Keywords: Rheology; High pressure; Ionic liquid; Lubricant; Viscosity.
1. INTRODUCTION

Nowadays high pressure rheology is gaining growing interest in several areas such as the crude oil extraction, polymers high-pressure treatment and processing of foods, basic research in chemistry, physics and geophysics, fuels for diesel engines, high-pressure extraction processes using supercritical fluids, high-pressure impregnation and coating, innovative solvent technology based on ionic liquids and semiconductor and nanoparticle industries. Among many applications, high pressure rheology is an important issue in the field of lubrication in order to characterize lubricants behaviour when subjected to high pressures. This field comprises an important area because this technique allows the determination of the pressure-temperature-viscosity relationship. Thus, in elastohydrodynamic lubrication (EHL), one of the main parameters governing the global contact behaviour is the fluid film thickness, which separates the solids under contact, and is controlled to a great extent by the lubricant high pressure rheology. It is important to mention that the lubricant film thickness is the main parameter studied in EHL contacts. The classic formulas for the calculation of the film thickness require the knowledge of the pressure-viscosity coefficient, which can be determined from measurements of the low shear viscosity as a function of pressure up to moderate pressures. Non-Newtonian effects should be taken into account to evaluate the lubricant behaviour in the high-pressure EHL contacts. Additionally, other interesting parameter to be considered in a EHL analysis is the temperature-viscosity coefficient.

High pressure rheometers can be classified into three groups, capillary, rotational (cone and plate, parallel plate and concentric cylinder geometries) and sliding plate rheometers. The advantages of rotational rheometers are: the viscosity measurements are made under steady-state conditions, there is negligible variation of shear rate and shear stress throughout the sample and they allow the study and characterization of Non-
Newtonian behaviour. However, rotational rheometers present some disadvantages, such as shear-induced dissipative conversion of mechanical energy into thermal energy, secondary flow caused by inertial forces (so-called Taylor vortices), slip on the shear surfaces, separation effects in suspensions and end effects.1

Literature on high pressure rheometry is scarce even though several authors have worked on this topic. The earliest pressurized Couette viscometer appears to have been constructed by Thomas et al., who placed an electric motor within the pressure vessel to drive the rotation. They experienced many problems with this arrangement and the heat generated by the motor was significant. Hutton and Phillips overcame the problem of driving the rotation by passing a shaft through a high-pressure seal and situating the motor outside of the pressure vessel. Hamilton and Bottomley characterised the high pressure rheology behaviour of polymer-oil blends up to stresses of 5×10^{-4} Pa through a high pressure Couette rheometer. Bair and Winer developed a rotational Couette high-pressure, high-shear stress viscometer with a pressure capability of 300 MPa. Subsequently, Bair built a similar rheometer that can be used up to 1 GPa. Briscoe et al. have measured rheological properties by a modified Haake Searle-type viscometer, which was incorporated into a high temperature and pressure chamber, with a maximum operating pressure of 100 MPa. Khandare et al. have designed and developed a high-temperature, high-pressure rheometer to measure viscosity of pitch material at elevated temperatures. Larsson et al. and Petterson have determined the pressure–viscosity relationship of lubricants by means of a Couette rheometer whose pressure can be raised to 500 MPa. Parris et al. performed high pressure steady-shear rheological measurements in a Couette rheometer designed for pressures up to 238 MPa. Hwang et al. determined rheological properties by means of a rotational viscometer adapted to measure the viscosity of polymer under high temperature and pressure.
conditions. Martínez-Boza and his collaborators 18-20 has performed rheological studies on used motor oil/vacuum residue blends, bitumens, heavy oils, invert-emulsion oil muds, and drilling fluids with two controlled stress rheometers, RheoStress RS600 from Haake Gbr and MARS II, from Thermo Scientific using coaxial cylinder and double helical ribbon geometries. Sun et al. characterized a water/crude oil emulsion in the presence of methane with an Anton Paar (Graz, Austria) MCR302 rheometer, which temperature can be controlled between 123.15 K and 1273.15 K and up to 15 MPa.21 Finally, modified Couette geometries have been recently proposed by Pandey et al.22 to characterize forming gas hydrates. In this work we have undertaken the setup of a new device for rheological characterization at high pressure. The heart of the setup is a Reologica StressTech Couette HTHP rheometer equipped with a high pressure cell that allows measurements up to 100 MPa.

On the other hand, study of ionic liquids (ILs) as potential lubricants has greatly increased during the last decade, due to their main properties such as low volatility, high thermal stability and conductivity, low melting point, broad liquid range and low temperature fluidity23-29. There are several works that study the viscous behavior at constant shear rate with falling body viscometers30-32, rotational viscometers33-37, rolling ball viscometers38, capillary viscometers39 and vibrating wire viscometers40, among others. Concerning rheological studies at not constant shear rates, there are only some publications at atmospheric pressure. Thus, Burrell et al.41 studied the shear thinning of 14 protic and aprotic ionic liquids (ILs) by stress-controlled rheometry from 293 K from 353 K with shear rates from 10 to 8000 s-1 finding that only five ILs present Newtonian behaviour. Voeltz et al. Smith et al.42 have found that some primary ammonium ILs behave as Newtonian fluids at low shear rates but shear thin at high shear. Camargo et al.43 have found similar behaviour for five esters of hydroxylalkylammonium. Tao and
Simon have found Non-Newtonian behaviour of a series of imidazolium-based ILs with cyclic and aromatic groups at low temperatures (from 215 to 241 K).

In this work we have studied two ILs, 1-ethyl-3-methylimidazolium n-hexylsulfate and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl) trifluorophosphate, which have kinematic viscosities at 313.15 K and 0.1 MPa slightly higher than the values corresponding to ISOVG100 viscosity grade, as potential gear lubricants. We have performed rheological measurements of these two ILs up to 75 MPa and shear rates up to 1000 s\(^{-1}\). Moreover, we have calculated the local and universal pressure-viscosity coefficient, as well as the temperature-viscosity coefficient, comparing the obtained results with those of some reference lubricants.

2. EXPERIMENTAL SECTION

2.1. Materials. Samples of 1-ethyl-3-methylimidazolium n-hexylsulfate, \([\text{C}_2\text{C}_1\text{Im}][\text{C}_6\text{SO}_4]\), and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl) trifluorophosphate, \([\text{P}_{6,6,6,14}][(\text{C}_2\text{F}_5)_3\text{PF}_3]\) were kindly provided by Merck KGaA. Prior to their use, samples were degassed under vacuum and agitation at least during 48 h. The water content was after measured through a Karl Fischer method using a Mettler Toledo DL32 coulometric titrator. Purity of the IL samples as well as the water content are presented in table 1.

2.2. Measurement Technique. In this work we have undertaken the setup of a new device for rheological characterization at high pressure. Reologica StressTech Couette HTHP rheometer is the core of the setup. As can be seen in Figure 1 this rheometer consists of a CC25 DIN53019 concentric cylinder geometry and relies on Couette flow, involving confinement of the sample between a stationary cup (inner cylinder) and a rotating bob (outer cylinder), with a 1 mm gap. The inner cylinder has a diameter of 25
mm and a length of 37.67 mm. The surfaces of bob and cup cylinders are smooth according to the information provided by the developers of this rheometer. The high pressure cell is equipped with inlet and outlet ports for sample loading. The cell is suitable for self-purging and does not have to be opened after each measurement. The structure of the instrument is composed by a motor module, in which the drag cup motor applies a torque to the rotor and the position sensor measures the angular deflection during rotation. As regards the motor, it is an AC asynchronous one, extremely linear from low to high torque with a smooth and continuous response around 360 degrees. The rotor is light, high strength aluminium alloy, and has low inertia allowing fast transient and high frequency response. Concerning motor temperature, it is maintained constant by using an external heat exchanger (motor cooler). This allows the rheometer to run at full power continuously without any change in motor temperature and thus change in torque output. To be able to close the cell completely from the environment, the torque is applied using a magnetic coupling. The whole system is running in a maintenance free air bearing to avoid friction between rotating and static parts. This type of bearing requires a clean supply of dry oil-free air of 5 l/min and ensures frictionless measurements. Clean and dry air is supported to the rheometer bearing by using an additional compressed air line with four SMC air filters (AMG 150C, AW20, AFM20 and AFD20). Figure 2 shows the rheometer setup.

The apparatus can perform controlled stress and controlled rate measurements. The rheometer can operate in a torque range between $1 \cdot 10^{-4}$ and $4 \cdot 10^{-2}$ N·m, which entails a maximum shear stress around 350 Pa. It can operate in a temperature range from ambient temperature to 493.15 K. The cell can be heated or cooled at programmed rates. The temperature control is performed through a Joule/Thomson approach, utilizing a single temperature control system (control box). In addition, a separate water circulator
(Huber CC505) is required to act as the cold side heat sink for the thermoelectric device. The temperature control system consists also of a thermocouple sensor and an electronic box. The thermocouple reading was corrected from 288.15 K to 363.15 K through a calibrated Pt-100 probe inserted inside the rheometer cup. The final expanded uncertainty (k=2) of the temperature readings is estimated to be ±0.5 K. Concerning pressure the rheometer cell can operate at pressures up to 100 MPa. The pressure in the cell is increased externally through a high pressure line consisting of a piston screw pump HiP model 50-6-15, a pressure transducer Digibar II K-PE-300 calibrated with an expanded uncertainty (k=2) of ±0.02 MPa, as well as high pressure tubes and valves connected to the ports of the measurement cell. This rheometer works along with the RheoExplorer software, thus a computer is used as the interface to allow the user to control the instrument, collect and analyze the resulting data.

2.3. Experimental procedure. To avoid contamination of the samples a syringe coupled to a Hamilton valve was connected to one of the ports of the high pressure rheometer cell (connected to V6 as can be seen in Figure 2), for sample loading. Prior to the loading of the samples by means of this Hamilton valve all the system is evacuated using a rotary vacuum pump Edwards RV3 connected to V7. Once the system is loaded V6 is closed. The temperature set point for the measurements is selected in the RheoExplorer software and the thermostatic bath temperature is automatically fixed at 5 K lower. Once the temperature is stable, the magnetic coupling gap of the rheometer is fixed to zero. The first tests that are performed to the sample are stress-time tests in order to know the minimum and maximum stress limits which give right results for our sample. Afterwards the flow curves at atmospheric pressure under controlled stress tests are performed in an automated way following the stress ramp imposed to the software. A delay time of 10 s and an integration time of 20 s for each measurement are usually selected. When
finished, pressure is increased by means of the piston screw pump and the measurement procedure is repeated. As soon as all the desired pressures are measured, the temperature set point is changed and the next isotherm measurements are carried out. Finally all the system must be cleaned with suitable solvents.

2.4. Calibration and uncertainty. In a typical Couette rheometer, the velocity or displacement of the moving surface and the force on one of the surfaces are the variables measured. By using mathematical relationships it is possible to relate the torque (M) with the shear stress (σ) and the angular velocity (Ω) with the shear rate (γ'), respectively. In the literature there are previous publications reporting the equations necessary to describe the rotational rheometers. Steffe in a publication on rheological methods in food process engineering cite some of the assumptions made in developing the mathematical expression describing instrument. These assumptions are: flow is laminar and steady, end effects are negligible, test fluid is incompressible, there is no slip at the walls of the instruments, and radial and axial velocity components are zero. As these authors suggest the stress (σ) can be easily related with the torque through the following expression:

\[
\sigma = \frac{F}{A} = \frac{M/r}{A} = \frac{M/r}{2\pi L r} = \frac{M}{2\pi L r^2} \quad (1)
\]

where \(r \) is the radius, \(L \) is the length of the cell, \(F \) is the force, \(M \) is the torque and \(A \) the area. In this equation the relation between the force, the torque \(M \) and the radius \(r \) is also used. To find the relation between the angular velocity (Ω) with the shear rate (γ') it is necessary to make some calculations. Thus, usually to calculate the shear rate (γ') it is assumed that the fluid elements move in circles about the common axis of the cylinders with an angular velocity (ω) which is a function of radius (r) from the center to the position in the gap. Moreover the shear rate is a function of the stress. Thus, if we
study Newtonian fluids or power law fluids, the following relations (equation 2 and 3) will be respectively accomplished:

\[\dot{\gamma} = f(\sigma) = \frac{\sigma}{\eta} \quad (2) \]

\[\dot{\gamma} = f(\sigma) = \left(\frac{\sigma}{K} \right)^{\frac{1}{n}} \quad (3) \]

So, in general we can write:

\[\dot{\gamma} = -r \frac{d\omega}{dr} = f(\sigma) \quad (4) \]

It is possible to express \(dr \) as a function of \(d\sigma \) by differentiating equation (1), that is:

\[\frac{dr}{d\sigma} = \frac{2\pi L r^2}{2\pi L} \left(\frac{-1}{2} \right) \sigma^{-3/2} = \frac{-r}{2\sigma} \quad (5) \]

From the combination of equations (4) and (5) it can be obtained the relation between the angular velocity of the bob and the shear stress in the gap:

\[\Omega = -\frac{1}{2} \int_{\sigma_1}^{\sigma_2} f(\sigma) \frac{d\sigma}{\sigma} \quad (6) \]

Being 1 the inner cylinder and 2 the outer cylinder. In the rheometer used in this work the inner cylinder is the moving surface \((\omega=\Omega) \) and the outer cylinder the stationary surface \((\omega=0) \). For Newtonian fluids equation (2) is accomplished and consequently:

\[\Omega = -\frac{1}{2} \int_{\sigma_1}^{\sigma_2} \frac{\sigma d\sigma}{\eta} = \frac{1}{2\eta} (\sigma_1 - \sigma_2) \quad (7) \]

Using equation (1) to calculate the stress in the inner \((r=R_1) \) and in the outer \((r=R_2) \) cylinder allows writing equation (7) as:

\[\Omega = \frac{M}{4\pi \eta L} \left(\frac{1}{R_1^2} - \frac{1}{R_2^2} \right) \quad (8) \]
This expression is called Margules equation and describes the behaviour of a Newtonian fluid in a concentric rheometer. From equation (2) by the substitution of the value of σ obtained from equation (1), as well as the value of η given by the Margules yields:

$$\gamma = \frac{2}{r^2} \left(\frac{1}{R_1^2} - \frac{1}{R_2^2} \right)^{-1} \Omega \tag{9}$$

In a typical Couette rheometer, velocity or displacement of the moving surface and the force on one of the surfaces are the variables measured. By using equation (1) and (9) it is possible to relate the torque with the shear stress and the angular velocity with the shear rate, respectively. Both equations can be rewritten as follows:

$$\sigma = C_\sigma \cdot M \tag{10}$$

$$\gamma = C_\gamma \cdot \Omega \tag{11}$$

where C_σ and C_γ are geometrical constants defined according to the following equations:

$$C_\sigma = \frac{1}{2\pi r^2 L} \tag{12}$$

$$C_\gamma = \frac{2}{r^2} \left(\frac{1}{R_1^2} - \frac{1}{R_2^2} \right)^{-1} \tag{13}$$

So, theoretically by using the geometrical constants (equations 12 and 13) it should be possible to obtain the stress from the torque and the shear rate from the angular velocity. Subsequently, the dynamic viscosity could be determined. Notice here that equations (10 to 13) have been derived considering valid equation (2), that is assuming that the fluid in Newtonian. In practice, the use of these equations is not sufficient to determine accurately dynamic viscosity or flow curves. Not only due to the assumption that the fluid has a linear relation between $\dot{\gamma}$ and σ through the viscosity, but also due to other aspects that should be considered for concentric cylinder rheometers. One of them is the
inertia of rotor, thus the stress necessary to overcome the inertia of rotor and measurement system, can be a substantial part of the applied stress. This aspect is more significant for measurements on low viscous samples. Another aspect is the friction. The Reologica HTHP rheometer used in this work is running in an air bearing to reduce friction between rotating and static parts. The friction in the bearing of the rotating part should be very low where the angular deflection is detected because it would decrease the rotational speed and the calculated viscosity values would be higher than the real value. As Steffe48 remarks, another important fact is the end-effects that can influence rheological measurements, thus it is important to account for the influence of the bottom of the cylinder on the torque response of the system. Schramm49 suggests also that it is necessary to control the wall effects. They occur when the adherence between the moving surface and the liquid is insufficient to transmit the shear stress and the surface slips above the non-moving liquid sample.

In this work, in a first moment we have tried to use the values of C_σ and C_γ reported in the technical specifications of the Reologica HTHP rheometer and included in the RheoExplorer software. With the values of these geometrical constants we have tried to reproduce the dynamic viscosity values of two Newtonian fluids, squalane (SQN) and diisodecyl phthalate (DIDP). The dynamic viscosity of both these fluids is accurately reported in literature51-55 over wide temperature and pressure intervals. We have observed that the dynamic viscosity obtained with Reologica HTHP rheometer finding higher than the reference values of SQN and DIDP. Subsequently, we have selected more viscous fluids (polyalphaolefin, PAO40 and polybutene, H8) with the aim to reduce the effect of the inertia of the motor. Moreover we have decided to calibrate the rheometer for each sample and temperature using for that the viscosity values at atmospheric pressure measured in a high precision rotational SVM 3000 Stabinger viscometer. The correction
of viscosity values performed at atmospheric pressure is assumed to be the same overall the pressure range. In this sense we should remark that they are scarce publications in the literature giving precise details on calibration method used for rotational rheometers, even less for rheometer working at high pressures. Finally, as the uncertainty of this rheometric technique is not established in the equipment specifications, it was analyzed in this work by comparison of the results obtained for polylalphaolefin (PAO40) and polybutene (H8) with those of the literature.

3. RESULTS

Firstly, the accuracy determination of high pressure viscosity has been checked studying PAO4056 and also of polybutene H857 in Newtonian conditions. For the PAO 40, an percentage absolute average deviation, AAD%, of 7% in the temperature range from 298.15 K to 353.15 K up to 75 MPa with correlated data from Bair58 was obtained. Also, for the polybutene H8, viscosity values were also compared with correlated data from Bair$^{58, 59}$ obtaining an AAD% around 10%. The relative deviations we have found for PAO 40 and polybutene H8 are plotted in Figure 3. Taking into account the uncertainty of the rheometer used by Bair58 we estimate that the expanded uncertainty (k=2) of our equipment is 7%.

Subsequently, rheological flow tests were performed up to shear rates of 1000 s$^{-1}$ for both ILs at temperatures between 298.15 K and 353.15 K up to 75 MPa. As example, a flow test is presented in Figure 4 for both ILs at 298.15 K for the different pressures. A Newtonian behaviour was found for the studied ILs in the temperature, pressure and shear rate ranges analysed in this work. The reference viscosity values at atmospheric pressure employed for calibration were taken from Gaciño et al.37 and the obtained viscosity values at high pressure are presented in Table 2. The viscosity values of
[P_{6,6,6,14}][(C_2F_5)_3PF_3] are higher than those of [C_{2CIm}][C_6SO_4]. These viscosity values were correlated as a function of temperature and pressure by means of the following Comuñas et al.60 correlation, for which those viscosity data at atmospheric pressure from Gaciño et al.37 were also employed:

\[
\eta(p,T) = A \left(\frac{p + E_0 + E_1 T + E_2 T^2}{p_{ref} + E_0 + E_1 T + E_2 T^2} \right)^D \exp \left(\frac{B}{T - C} \right)
\]

(14)

Coefficients of this adjustment are presented in Table 3. The parameters \(A, B\) and \(C\) were obtained from the correlation of previously reported viscosity values37 at ambient pressure as a function of temperature. Moreover, correlated values are plotted along with the experimental ones as a function of temperature for the different pressures in Figure 5. It can be observed that the influence of pressure on viscosity is stronger for [P_{6,6,6,14}][(C_2F_5)_3PF_3]. This in agreement with results obtained previously in our laboratory with other three ILs based on [(C_2F_5)_3PF_3] anion: one based in a trialkylimidazolium cation61, 62 [C_{4C1C1Im}][(C_2F_5)_3PF_3], another on 1-butyl-1-methylpyrrolidinium30 [C_{4C1Pyrr}][(C_2F_5)_3PF_3] and the other contains the 1-(2-methoxyethyl)1-methyl-pyrrolidinium cation45, 46 [C_{1OC2C1Pyrr}][(C_2F_5)_3PF_3].

We have performed a comparison between the viscosity values obtained for [C_{2CIm}][C_6SO_4] and [P_{6,6,6,14}][(C_2F_5)_3PF_3] and some data previously published63 for four gear lubricants with the same an viscosity grade (ISOVG100). The gear lubricants are a mineral oil, a biodegradable synthetic ester, a polyalphaolefin and a polyalkylene glycol. In average, viscosity values of [C_{2CIm}][C_6SO_4] and [P_{6,6,6,14}][(C_2F_5)_3PF_3] are 19% and 46% higher than these gear lubricants63, respectively. This comparison is depicted as a function of temperature at 50 MPa in Figure 6. It is important to note that our experimental viscosity values for [C_{2CIm}][C_6SO_4] are very close to those for the
polyalkylene glycol63, AAD\% in the whole experimental temperature and pressure range is 11\%, whereas the maximum difference is 30\%.

The local pressure-viscosity coefficient, α, is employed for the characterization the viscosity pressure dependence of lubricants and it is defined by means of the following equation:

$$\alpha(p) = \frac{1}{\eta} \left(\frac{\partial \eta}{\partial p} \right)_T$$

This coefficient is frequently used to quantify the EHL film-generating capability of a lubricant64. We have calculated this property by differentiation from the $\eta(T,p)$ correlation and it is plotted in Figure 7 for the two studied ILs. It can be observed that $\alpha(p)$ diminishes both with temperature and pressure and that $[P_{6,6,6,14}][(C_{2}F_{5})_{3}PF_{3}]$ has higher values of this property than $[C_{2}C_{1}Im][C_{6}SO_{4}]$. Gaciño et al.30, 61 have previously found that other ILs with the anion $[(C_{2}F_{5})_{3}PF_{3}]^{-}$ present also higher local pressure viscosity coefficients than those with the anions bis(trifluoromethylsulfonyl)imide [NTf$_2$] and trifluoromethanesulfonate [CF$_3$SO$_3$].

Additionally, we have performed in Figure 8 a comparison between the local pressure-viscosity coefficient of the ILs studied in this work with other fluids from literature at 313.15 K, i.e. an IL based on $[(C_{2}F_{5})_{3}PF_{3}]^{-}$ anion, a polyalkylene glycol (PAG3)65, squalane52 as well as the mineral oil, the biodegradable synthetic ester, the polyalphaolefin 0 and the polyalkylene glycol measured by Gold et al.63. It can be observed that the highest local pressure-viscosity coefficients are obtained for squalane, the four $[(C_{2}F_{5})_{3}PF_{3}]^{-}$ ILs and PAG3 whereas the lowest values are obtained for both alkyl sulfate ILs. It also can be seen that the effect of the increasing four methylene groups in the imidazolium cation increases quite strongly the local pressure-viscosity coefficient.
Another interesting parameter for characterizing fluids for lubricant applications is the universal pressure-viscosity coefficient, α_{film}, which is independent of pressure and it is given by the following equation66:

$$\alpha_{\text{film}} = \frac{1-\exp(-3)}{p_v(3/\alpha^*)}$$

(16)

where p_v (isoviscous pressure) and α^* (piezo-viscous coefficient) are defined as follows:

$$p_v(p) = \int_0^p \frac{\eta(p')dp'}{\eta(p')}$$

(17)

$$\alpha^* = \frac{1}{p_v(\infty)} = \left[\int_0^\infty \frac{\eta(p)dp}{\eta(p)} \right]^{-1}$$

(18)

The universal pressure-viscosity coefficients were calculated for the ILs studied in this work and are reported in Table 4 and for the different temperatures. It is observed that the α_{film} values of [P6,6,6,14][(C2F5)3PF3] are near the double of those of [C2C1Im][C6SO4].

The values obtained for the first IL are similar to those of [C4C1Pyrr][(C2F5)3PF3] and [C4C1Pyrr][(C2F5)3PF3] and quite bigger than those of several ILs based of [NTf2]-, [CF3SO3]-, tetraborofluorate ([BF4]-), hexafluorophosphate ([PF6]-), tosylate ([TOS]-) and alkyl sulfate ([C2SO4]-, [C1SO4]-) anions30, 62, 65, 67.

The pressure-viscosity coefficients are needed to determine the central film thickness (h_c) of the lubricants in rolling elements under EHL conditions. Several definitions of the pressure-viscosity coefficients66 were used for this aim: the local pressure-viscosity coefficient at different pressure conditions (0.1 MPa or another pressure) or the piezo-viscous coefficient highest, among others. Bair et al.66 and Liu et al.68 showed that the definition of α_{film} given by equation (16) provide values for the central thickness, which are coherent with those obtained from interferometry experiments.
In order to analyze the effect of the lubricant in the central thickness (h_c), we have used the following equation64 proposed by the American Gear Manufactures Association (AGMA) for calculation of h_c:

\begin{equation}
 h_c = k \eta_0^{0.69} \alpha^{0.56} U^{0.69}
\end{equation}

where η_0 is the viscosity at atmospheric pressure, U the relative speed of the rolling element and k is a parameter that depends on surface geometry, the applied load and the elastic parameters of the rolling elements. For the viscosity pressure coefficient, α, needed in equation (19), we have chosen, as in previous articles30, 62, 65, 67, 69, the definition of α_{film} given by equation (16). If geometry, elastic properties, speed and loads are fixed, EHL film central thickness varies with two properties of the lubricant: the universal pressure-viscosity coefficient and the absolute viscosity, as follows64:

\begin{equation}
 h_c \propto \eta_0^{0.69} \alpha_{film}^{0.56}
\end{equation}

Thus, we have plotted in Figure 9 $\eta_0^{0.69} \alpha_{film}^{0.56}$ against temperature for the studied ILs, finding that under the same EHL conditions, [P$_{6,6,6,14}$][(C$_2$F$_5$)$_3$PF$_3$] would have a thicker central thickness than [C$_2$C$_1$Im][C$_6$SO$_4$]. In previous papers30, 62, 65, 67, 69 we have evaluated the factor due to the lubricant $\eta_0^{0.69} \alpha_{film}^{0.56}$ for 19 ILs and 13 mineral, synthetic or vegetable oils. Only the IL [CsC$_1$Im][PF$_6$], whose kinematic viscosity at 313 K is 226 mm2s$^{-1}$, present higher values that those obtained for [P$_{6,6,6,14}$][(C$_2$F$_5$)$_3$PF$_3$]. As [PF$_6$]$^-$ based ILs present corrosion problems due to their reactivity, when a thick [P$_{6,6,6,14}$][(C$_2$F$_5$)$_3$PF$_3$] to protect the surfaces against wear is required [P$_{6,6,6,14}$][(C$_2$F$_5$)$_3$PF$_3$] seems to be a good option as lubricant for rolling elements.

Finally, we have calculated the temperature-viscosity coefficient, β, which is given by the following equation:
\[\beta = -\frac{1}{\eta} \left(\frac{\partial \eta}{\partial T} \right)_p \]

The obtained values of the temperature-viscosity coefficient are presented in Figure 10. This property depends highly on temperature, decreasing with the temperature increase, whereas the dependence on pressure is rather smooth. It has be found that the values of this property are very similar for both ILs, 4% being the difference. In figures 10 (a and b) the β values of [C₄C₁Pyrr][(C₂F₅)₃PF₃] and [C₄C₁Pyrr][CF₃SO₃] were also included. The lowest β values, i.e. lowest viscosity-temperature dependence, of the last IL are in agreement with the fact that its viscosity index (VI=156) is higher than those of the other three ILs [C₂C₁Im][C₆SO₄], [P₆,₆,₆,₁₄][(C₂F₅)₃PF₃] and [C₄C₁Pyrr][(C₂F₅)₃PF₃] whose VI is respectively 136, 128, 119.

4. CONCLUSIONS

The rheological characterization of [C₂C₁Im][C₆SO₄] and [P₆,₆,₆,₁₄][(C₂F₅)₃PF₃] was performed in this work from 298.15 K to 353.15 K, up to 75 MPa and shear rates up to 1000s⁻¹. It was found a Newtonian behaviour for both ILs under the studied conditions, finding viscosity values higher for [P₆,₆,₆,₁₄][(C₂F₅)₃PF₃] than for [C₂C₁Im][C₆SO₄]. Moreover, these viscosity values were compared with those of different reference oils for gear applications, finding that viscosity values of [C₂C₁Im][C₆SO₄] are close to those of a polyalkylene glycol with ISO VG of 100. Additionally we have calculated the viscosity derived properties \(\alpha(p) \) and \(\beta \). For the first of them, it was observed that values for [P₆,₆,₆,₁₄][(C₂F₅)₃PF₃] are of the same order than literature values for squalane⁵² and also higher than those for [C₂C₁Im][C₆SO₄]. As regard the temperature-viscosity coefficient, very similar values (around 4%) were found for the studied ILs. Finally, \(\alpha_{film} \) values of [P₆,₆,₆,₁₄][(C₂F₅)₃PF₃] were found to be near double than those of [C₂C₁Im][C₆SO₄].
Funding

This work was supported by Spanish Ministry of Economy and Competitiveness and the UE FEDER programme through CTQ2011-23925, ENE2014-55489-C2-1-R and ENE2014-55489-C2-2-R projects as well as by Xunta de Galicia through the EM2013/031 and GRC ED431C 2016/001 programmes and the Galician Network on Ionic Liquids ReGaLiS R2014/015.

ACKNOWLEDGEMENTS

We express our gratitude to Prof. Martínez-Boza (University of Huelva, Spain) for his useful advice. Authors acknowledge the samples provided by Merck KGaA (Ionic Liquids), Ineos Oligomers (Polybutene) and REPSOL (PAO40).

This paper was part of the Doctoral Thesis of T. Regueira.
References

Table 1. Purity and water content of IL samples.

<table>
<thead>
<tr>
<th>Ionic Liquid</th>
<th>Compound Name</th>
<th>CAS Number</th>
<th>Mole-fraction purity</th>
<th>Mass-fraction water content</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C₂C₅Im][C₆SO₄]</td>
<td>1-ethyl-3-methylimidazolium n-hexylsulfate</td>
<td>342573-75-5</td>
<td>>0.999<sup>a</sup></td>
<td>16·10⁻⁶</td>
</tr>
<tr>
<td>[P₆,₆,₆,₁₄][(C₂F₅)₃PF₃]</td>
<td>trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl) trifluorophosphate</td>
<td>639092-18-5</td>
<td>0.98<sup>b</sup></td>
<td>11·10⁻⁶</td>
</tr>
</tbody>
</table>

^aHPLC
^bNMR
Table 2. Viscosity values, η (mPa·s) of the ILs measured in this worka.

<table>
<thead>
<tr>
<th>p / MPa</th>
<th>T / K</th>
<th>298.15</th>
<th>313.15</th>
<th>323.15</th>
<th>333.15</th>
<th>343.15</th>
<th>353.15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[C$_2$C$_1$Im][C$_6$SO$_4$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>354</td>
<td>154</td>
<td>94.0</td>
<td>63.8</td>
<td>44.5</td>
<td>31.4</td>
<td></td>
</tr>
<tr>
<td>50.00</td>
<td>571</td>
<td>238</td>
<td>142</td>
<td>94.8</td>
<td>65.9</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td>75.00</td>
<td>737</td>
<td>304</td>
<td>186</td>
<td>120</td>
<td>82.1</td>
<td>56.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[P$_{6,6,6,14}$][(C$_2$F$_5$)$_3$PF$_3$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>413</td>
<td>189</td>
<td>114</td>
<td>78.1</td>
<td>53.5</td>
<td>37.9</td>
<td></td>
</tr>
<tr>
<td>50.00</td>
<td>913</td>
<td>401</td>
<td>223</td>
<td>159</td>
<td>112</td>
<td>76.3</td>
<td></td>
</tr>
<tr>
<td>75.00</td>
<td>1417</td>
<td>615</td>
<td>364</td>
<td>232</td>
<td>162</td>
<td>109</td>
<td></td>
</tr>
</tbody>
</table>

a Expanded uncertainties are $U(\eta) = 0.07$ for viscosity, $U(T) = 0.5$ K for temperature and $U(p) = 0.02$ MPa for pressure (k=2, level of confidence=0.95).
Table 3. Parameters of the Comuñas et al. 60 correlation for the ILs studied in this work.

<table>
<thead>
<tr>
<th></th>
<th>$[\text{C}_2\text{C}_1\text{Im}][\text{C}_6\text{SO}_4]$</th>
<th>$[\text{P}_{6,6,6,14}][\text{((C}_2\text{F}_5)_3\text{PF}_3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^2 \cdot A$</td>
<td>9.265</td>
<td>3.588</td>
</tr>
<tr>
<td>B/K</td>
<td>1074.7</td>
<td>1423.6</td>
</tr>
<tr>
<td>C/K</td>
<td>166.13</td>
<td>142.93</td>
</tr>
<tr>
<td>D</td>
<td>4.125</td>
<td>7.971</td>
</tr>
<tr>
<td>E_0/MPa</td>
<td>-828.4</td>
<td>684.3</td>
</tr>
<tr>
<td>$E_1/MPa \cdot K^{-1}$</td>
<td>5.879</td>
<td>-2.745</td>
</tr>
<tr>
<td>$10^3 \cdot E_2/MPa \cdot K^{-2}$</td>
<td>-6.69</td>
<td>5.837</td>
</tr>
<tr>
<td>AAD%</td>
<td>1.0</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Table 4. Universal pressure-viscosity coefficient α_{film} of the ionic liquids studied in this work in GPa$^{-1}$

<table>
<thead>
<tr>
<th>T / K</th>
<th>[C$_2$C$_1$Im][C$_6$SO$_4$]</th>
<th>[P$_{6,6,6,14}$][(C$_2$F$_5$)$_3$PF$_3$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.15</td>
<td>10.3</td>
<td>18.8</td>
</tr>
<tr>
<td>313.15</td>
<td>9.5</td>
<td>18.2</td>
</tr>
<tr>
<td>323.15</td>
<td>9.1</td>
<td>17.7</td>
</tr>
<tr>
<td>333.15</td>
<td>8.7</td>
<td>17.2</td>
</tr>
<tr>
<td>343.15</td>
<td>8.5</td>
<td>16.8</td>
</tr>
<tr>
<td>353.15</td>
<td>8.2</td>
<td>16.3</td>
</tr>
</tbody>
</table>
Figure 1. Coaxial cylinder system, CC25 DIN53019, used in Reologica StressTech Couette HTHP rheometer
Figure 2. Schematic set-up of the high pressure rheometric technique. (E1) air filters; (E2) rheometer; (E3) motor cooler; (E4) computer; (E5) control box; (E6) thermostatic bath; (E7) glass syringe connected to Hamilton valve; (E8) piston screw pump; (V1 to V7) valves and (I1) pressure transducer.
Figure 3. Relative deviations between viscosity data obtained in this work and those from Bair 58,59 for (a) PAO40 and (b) polybutene H8 at 10MPa (□, ■), 50 MPa (○, ●) and 75 MPa (◇, ◆). Empty symbols represent comparison with reference 58 and filled symbols with reference 59.
Figure 4. Flow tests at 298.15 K for (a) [C₂C₅Im][C₆SO₄] and (b) [P₆,₆,₆,₁₄][(C₂F₅)₃PF₃] at
0.1 MPa (+), 10 MPa (∙), 50 MPa (△) and 75 MPa (○).
Figure 5. Viscosity values of $[\text{C}_2\text{C}_1\text{Im}][\text{C}_6\text{SO}_4]$ (empty symbols) and $[\text{P}_{6,6,6,14}][(\text{C}_2\text{F}_5)_3\text{PF}_3]$ (filled symbols) as a function of temperature for different pressures. 10 MPa (◇, 〇), 50 MPa (□, ■) and 75 MPa (△, ▲). Solid lines represent the Comuñas et al. 60 correlation (Equation 14)
Figure 6. Viscosity values as a function of temperature at 50 MPa. [P_{6,6,6,14}]([C_2F_5]_3PF_3] (dotted line), [C_2C_1Im][C_6SO_4] (dashed line), mineral oil 923.M.100 63 (dashed-dotted line), biodegradable synthetic ester 1.E.S.100 63 (solid line), polyalphaolefin 971.PAO.100 63 (dashed-double dotted line), polyalkylene glycol 992.PG.100 63 (long dashed line).
Figure 7. Local pressure-viscosity coefficient, α, of $[\text{C}_2\text{C}_1\text{Im}][\text{C}_6\text{SO}_4]$ (empty symbols) and $[\text{P}_{6,6,6,14}][\text{(C}_2\text{F}_3)_3\text{PF}_3]$ (filled symbols) as a function of temperature at 0.1 MPa (■, □), 10 MPa (●, ○), 50 MPa (◆, ◆), 75 MPa (▲, △).
Figure 8. Local pressure-viscosity coefficient, α, at 313.15 K of mineral oil 923.M.10063 (dotted line), squalane40 (+), $[P_{6,6,6,14}][(C_2F_5)_3PF_3]$ (◇), $[C_4C_1Pyrr][(C_2F_5)_3PF_3]^{30}$ (◆), $[C_4C_1C_1Im][(C_2F_5)_3PF_3]^{61}$ (▲), PAG35 (□), $[C_1OC_2C_1Pyrr][(C_2F_5)_3PF_3]^{61}$ (×), polyalphaolefin 971.PAO.10063 (dashed line), biodegradable synthetic ester 1.ES.10063 (dashed-dotted line), polyalkyleneglycol 992.PG.10063 (long dashed line), $[C_2C_1Im][C_6SO_4]$ (○), and $[C_2C_1Im][C_2SO_4]^{71}$ (■).
Figure 9. $\eta_0^{0.69} \alpha_{film}^{0.56}$ factor as a function of the temperature for [C$_2$C$_1$Im][C$_6$SO$_4$] (△) and [P$_{6,6,6,14}$][(C$_2$F$_5$)$_3$PF$_3$] (○).
Figure 10. Local temperature-viscosity coefficient, β, of $[\mathrm{C}_2\mathrm{C}_1\mathrm{Im}][\mathrm{C}_6\mathrm{SO}_4]$ (△), $[\mathrm{P}_{6,6,6,14}][\text{(C}_2\text{F}_5)_3\text{PF}_3]$ (○), $[\mathrm{C}_4\mathrm{C}_1\text{Pyrr}][\text{(C}_2\text{F}_5)_3\text{PF}_3]^{30}$ (□) and $[\mathrm{C}_4\mathrm{C}_1\text{Pyrr}][\text{CF}_3\text{SO}_3]^{30}$ (□) as a function of temperature at 10 MPa (a), and 50 MPa (b).