Publisher Correction: Interactions of the Calcite \{10.4\} Surface with Organic Compounds: Structure and Behaviour at Mineral – Organic Interfaces

Hakim, S. S.; Olsson, M. H. M.; Sørensen, H. O.; Bovet, N.; Bohr, Jakob; Feidenhans’l, R.; Stipp, S. L. S.

Published in:
Scientific Reports

Link to article, DOI:
10.1038/s41598-018-28935-4

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Publisher Correction: Interactions of the Calcite \{10.4\} Surface with Organic Compounds: Structure and Behaviour at Mineral – Organic Interfaces

S. S. Hakim1, M. H. M. Olsson1, H. O. Sørensen1, N. Bovet1, J. Bohr2, R. Feidenhansl1 & S. L. S. Stipp1

Correction to: Scientific Reports https://doi.org/10.1038/s41598-017-06977-4, published online 08 August 2017

This Article contained an error in the legend of Table 1 where,

“For each interactors, the interacting TANC protein, the detection method and the binding region (experimentally validated) are here listed. Y2H: Yeast two hybrid; Co-IP: Co-immunoprecipitation; SPR: Surface plasmon resonance HTS: High-Throughput System; AC: Affinity Capture; PL: Proximity Label; MS: Mass spectrometry; CLIP: Cross-Linking ImmunoPrecipitation SF-TAP/MS: systematic tandem affinity purifications coupled to mass spectrometry; LIG_PDZ_{Class_1}: PDZ-binding motif; LIG_EVH1_1: Proline-rich motif binding to signal transduction class I EVH1 domains; DEG_SCF_TRCP1: SCF-betaTrCP1 complex target site; MOD_LATS_1: phosphorylation motif recognised by the LATS kinases; DOC_PP1_RVXF_1: PP1 docking motif; LIG_14-3-3_2: phospho-motif mediating the interaction with 14-3-3 proteins; LIG_Actin_WH2_2: Actin-binding motif; TRG_NES_CRM1_1: Nuclear Export Signal.”

now reads:

“The tabulated parameters are obtained from fitting the reflectivity data with box models. For models with more than one layer, the layer closest to the calcite surface is indexed 1 (e.g. Methanol-1). The density for calcite (2.71 g/cm\(^3\)) and helium (0.03 g/cm\(^3\)) were kept fixed during the fitting procedure, and their thicknesses were infinite. Error estimates were obtained for every parameter by varying the parameter until the \(\chi\)-based R-value is changed by \(5\%\) [70, 71]. The method does not reveal correlations between the parameters. On the right side, theoretical bulk density and the molecular length of the molecules are given for comparison.”

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

1Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark. 2DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark. 3Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark. Correspondence and requests for materials should be addressed to S.S.H. (email: hakim@nano.ku.dk) or H.O.S. (email: osholm@nano.ku.dk)