Flywheel Calibration of Coherent Doppler Wind Lidar

Pedersen, Anders Tegtmeier; Courtney, Michael

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Motivation

“Lidars are absolute instruments” is a sentence often heard, and by that is meant, that given the laser wavelength and the sampling frequency, we are able to calculate the measured radial speed through the well-known equation: \(v_r = \frac{\lambda}{2L} \cdot \Delta f \). There are no empirical constants that have to be found through a calibration as is the case for e.g. cups or even LDAs. Why then do we claim that lidar calibration is necessary anyhow? Probably the most direct answer is that without a calibration we cannot know that the lidar is getting it right. There could be wrong constants or some subtle errors in the algorithm. Only by comparing to a known ‘truth’ can we be completely sure that the lidar gives the correct speed.

Main uncertainty components

- Wheel diameter: 0.1 mm
- Relative uncertainty \(u_l = \frac{0.5}{10} \cdot 10^{-4} \)
- Frequency from tachometer to speed conversion: 10 ppm
- Relative uncertainty \(u_{\Delta f} = 1 \cdot 10^{-4} \)
- Tilt angle resolution: 0.01
- Relative uncertainty \(u_{\Delta \theta} = \frac{0.01}{\text{rad}} \cdot \frac{1}{2} = 2 \cdot 10^{-4} \)
- Combined relative uncertainty \(u_{\text{combined}} = \sqrt{u_l^2 + u_{\Delta f}^2 + u_{\Delta \theta}^2} = 4.5 \cdot 10^{-4} \)

Calibration rig

A simple model relating the error in measured speed due to non-tangential skimming angle, \(\psi_s \), to the inclination angle, \(\theta \), has been developed.

Function of speed

Function of focus distance

Model

A simple model relating the error in measured speed due to non-tangential skimming angle, \(\psi_s \), to the inclination angle, \(\theta \), has been developed.

By assuming the laser beam is infinitely narrow and that \(\theta \) and \(\psi_s \) are both small, the relation between \(\theta \) and \(\psi_s \) can be found from simple geometrical considerations:

The tringle formed by the vertical radius, the length \(d \), and back to centre is Pythagorean:

\[
R^2 = R^2 + d^2 = (R + b)^2 = (R + b)^2.
\]

Using that \(Rb \ll 2R \):

\[
R^2 = 2RLb + L^2b^2 = 2RLb,
\]

the skimming angle is found as:

\[
\psi_s = \sin \psi_s = \frac{d}{R} = \frac{2Lb}{R}.
\]

Now, the lidar only measures the speed component along the line-of-sight, thus \(\frac{v_{\text{lidar}}}{\sin \psi_s} = \frac{v_{\text{radial}}}{\sin (\psi_s + \theta)} = \frac{v_{\text{radial}}}{\sin (\psi_s + \theta)} \)

and by Taylor expansion of the cosine term a simple expression for the speed ratio error is reached:

\[
\frac{v_{\text{lidar}}}{\sin \psi_s} = 1 + \frac{v_{\text{radial}}}{\sin (\psi_s + \theta)} = \frac{1}{1} - \frac{Lb}{R}.
\]

Finally, the speed ratio error sensitivity is given as

\[
\frac{\partial v_{\text{lidar}}}{\partial \psi_s} = \frac{L}{R}.
\]

which for the actual calibration rig becomes

\[
\frac{\partial v_{\text{lidar}}}{\partial \psi_s} = \frac{1.58 \text{ m}}{2.87 \text{ m}} = 0.56 \text{ s/m}.
\]

Results

Conclusion

- Calibration rig built and running
- Model for measurement error as function of inclination angle made
- Measurements agree well with model
- Method stable over wide range of speeds
- The main uncertainties have been identified
- The line-of-sight speed can be calibrated to an uncertainty of approximately 0.5%