Polymer-derived carbon surfaces for enhancing stem cell differentiation

Ada-Ioana Bunea¹, Letizia Amato¹, Andrea Valsesia², Paola Pellacani², Andrea Casci Ceccacci², Stephan Sylvest Keller¹, Niels Bent Larsen¹, Arto Heiskanen¹ and Jenny Emnéus¹

1: Technical University of Denmark, Department of Micro- and Nanotechnology
2: Institute for Health and Consumer - Joint Research Centre - European Commission, Ispra (VA), Italy.

Luckenwalde, 27th of November 2015
Parkinson’s disease

DOPAMINE

Corpus striatum
Frontal cortex

Normal Neuron
Neuron Affected by Parkinson’s

Normal Movement
Movement Disorders

Dopamine production or substitute the neurotransmitter

Dopamine cannot pass through the blood-brain barrier

Surgery is employed in extreme cases

Treatment
Surgical treatment

• Employed in advanced stages in patient non-responsive to medication
• FDA-approved for Parkinson’s in 2002
• The procedure blocks electric signals from target areas in the brain
• It does not stop the disease from progressing
Fabrication

Micropillars:
Φ = 1.4 µm, h = 11 µm

Nanopillars:
Φ = 200 nm, h = 650 nm
Before pyrolysis:
Diameter: 450 nm
Height: 1200 nm

Contact angle: 95° (before) and 0° after plasma treatment
Electrochemical characterisation

Redox probe: $\text{[Ru(NH}_3\text{)_6]Cl}_2 / \text{[Ru(NH}_3\text{)_6]Cl}_3$

ΔE_p also varies with v

Cells growing on C surfaces

Flat carbon - schematic

Pillars – schematic

SEM images of hVM1-Bcl-x(L) cells growing on carbon nanopillars
Immunostaining experiments

Cell line: hVM1-Bcl-x(L) (human ventral mesencephalic neural stem cell line 1) cultured in growth media (in the absence of differentiation factors)
Immunostaining: for tyrosine hydroxylase (TH) and nuclei
Both carbon surfaces lead to spontaneous stem cell differentiation with high yields (70-80% dopaminergic neurons)

Dopamine exocytosis

Representative current-time trace recorded during amperometric detection of dopamine upon K⁺-induced depolarization from a population of hVM1-Bcl-x(L) under growing conditions (in the absence of differentiation factors): a: surface with no cells; b: cells grown on flat carbon; c: cells grown on carbon nanopillars.
Detection of dopamine

Calculated average charge related to the amount of detected dopamine released by cells grown without (no DF) and with (+ DF) differentiating conditions on flat carbon surfaces (flat) and carbon nanopillars (nanopillar) or micropillars (micropillar). Error bars represent the standard error of mean, n = 4 for the flat carbon surfaces and n = 7 for carbon pillars.

Surface area increase: 1.9x for micropillars and 1.01x for nanopillars – the surface area increase alone does not explain the large increase in measured currents.

Conclusions

✦ Carbon surfaces induce spontaneous stem cell differentiation into dopaminergic neurons
✦ They can be also employed as electrodes to measure dopamine exocytosis
✦ Detection of dopamine on nanopillars shows much higher currents than in the case of micropillars/flat carbon
✦ Currents are slightly higher in the presence of differentiation factors due to the slightly higher number of cells on the surface
Special thanks

The Bioanalytics group at DTU Nanotech

A. Valsesia
P. Pellacani
A. C. Ceccacci
European Commission
JRC, Italy - for providing the polymer nanopillars

A. Martinez Serrano
Univ. Autonoma de Madrid
hVM1-Bc ε[4]

Letizia Amato
Jenny Emnéus

Stephan Sylvest Keller
Arto Heiskanen

Thank you