Copper Sulfide nanocrystals for efficient photothermal ablation of tumor cells

Zheng, Zhiyong; Lee, Li; Yu, Ping; Ma, Lixin; Engelbrekt, Christian; Zhang, Jingdong

Published in:
Journal of Material Science & Engineering

Link to article, DOI:
10.4172/2169-0022-C5-105

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Copper Sulfide nanocrystals for efficient photothermal ablation of tumor cells

Zhiyong Zheng, ME, Department of Chemistry, Technical University of Denmark, Denmark
Li Lee, MS, Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
Ping Yu, PhD, Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
Lixin Ma, PhD, Department of Radiology, University of Missouri, Columbia, MO, USA
Christian Engelbrekt, PhD, Department of Chemistry, Technical University of Denmark, Denmark
Jingdong Zhang, PhD, Department of Chemistry, Technical University of Denmark, Denmark

Abstract

The unique properties of nanomaterials (e.g., novel optical, electronic and structural properties) provide new opportunities to approach current obstacles in medicine. One of the key aspects of the ‘nanophenomenon’ that potentially benefits biomedical research and nanomedicine is quantum size confinement, by which the absorption coefficient can be improved and absorption band can be selected at nanoscales. Nanomaterials as photothermal ablation (PTA) agents, which convert optical energy into thermal energy, are desired for cancer therapy especially at near-infrared (NIR, $\lambda = 700–1100$ nm) wavelength. In this study, we developed a process for rapid synthesis of CuS nanocrystals coated with starch for PTA. The thickness and width of nanocrystals were controlled by synthesis temperature, concentration of the precursors, i.e. CuCl$_2$ and (NH$_4$)$_2$S. Typically, the CuS nanocrystal is 1 nm in thickness, 10 nm in width and the starch coating of 1 nm (measured by atomic force microscopy and transmission electron microscopy). The starch acted as a protecting agent, preventing the aggregation and providing reaction sites for following modification of specific recognition agents. At low concentration of precursors, uniform nanocrystals were hardly achieved even with excess of starch (CuS$_{\text{LPHS}}$, Figure 1a). In contrast, monodispersed nanocrystals were obtained when the concentration of precursors increased (CuS$_{\text{HPLS}}$, Figure 1b). Moreover, with a same concentration of copper ions, CuS$_{\text{HPLS}}$ has higher absorptions in NIR region owing to the smaller average size of CuS$_{\text{HPLS}}$ than CuS$_{\text{LPHS}}$ (Figure 1c). Treated with CuS$_{\text{HPLS}}$ (conc. =4.4 µg/ml) and a 808-nm NIR laser at 38 W/cm2 for 2 minutes, human prostate cancer PC-3 cells showed a 36% inhibition of growth compared to those without CuS$_{\text{HPLS}}$ (n=3, $p=0.03$). Owing to the unique optical properties, small size, low cost of production and low cytotoxicity, CuS nanocrystals are a promising nanomaterial for cancer PTA therapy.

Recent Publications

Biography

Zhiyong Zheng is a PhD student at NanoChemistry group, Department of Chemistry, Technical University of Denmark. He specializes in the electrochemical analysis, nanochemistry, and materials characterization, for example, atomic force microscope, scanning electron microscope, transmission electron microscope, X-ray powder diffraction. With the background of environment science, he is focusing on the extracellular electron transfer, the application of nanomaterials in environment, medicine and energy.

Email: zhizhe@kemi.dtu.dk

Notes/Comments: