Changing the Usual Interpretation of the Structure and Ground State of Cu2+-Layered Perovskites

Aramburu, J. A.; García-Fernández, P.; Mathiesen, N. R.; García-Lastra, J. M.; Moreno, M.

Published in:
Journal of Physical Chemistry C

Link to article, DOI:
10.1021/acs.jpcc.8b00608

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Changing the Usual Interpretation of the Structure and Ground State of Cu\(^{2+}\) Layered Perovskites

J.A. Aramburu\(^*\), P. García-Fernández\(^1\), N. R. Mathiesen\(^2\), J. M. Garcia-Lastra\(^2\), M. Moreno\(^3\)

\(^1\)Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain

\(^2\)Department of Energy Conversion and Storage, Technical University of Denmark.
Fysikvej 309, 2800 Kgs. Lyngby, Denmark

ABSTRACT

Intense research on hybrid organic-inorganic layered copper perovskites are currently being carried out. Many interesting properties of these materials rest on the strong correlation between electronic structure and local geometry. As up to now no reliable information on the pressure dependence of Cu\(^{2+}\)-X’ distances (X = Cl, F) has been reported, we have derived them form first-principles calculations on several representative hybrid and inorganic Cu\(^{2+}\) layered compounds. As a salient feature, we find that in all cases the out-of-plane Cu\(^{2+}\)-X’ distance is nearly insensitive to pressure, contrary to what is found for the short and long in-plane distances. These results thus disprove the widely assumed idea that the local structure arises from a Jahn-Teller effect involving a principal axis in the layer plane. By contrast, the present work demonstrates that the ground state and the local geometry are governed by two main factors. On one hand, the axial internal electric field due to the rest of lattice ions, which favors placing the hole of the Cu\(_6\)\(^{4+}\) unit in the 3z\(^2\)-r\(^2\) level. On the other hand, the existence of an additional orthorhombic instability in the layer plane that nevertheless preserves the dominant 3z\(^2\)-r\(^2\) character, in agreement with experimental data of pure and doped Cu\(^{2+}\) layered compounds. This instability is favored in pure compounds by a cooperative mechanism that is also discussed. The present calculations on these systems under pressure show that a slightly elongated Cu\(_6\)\(^{4+}\) unit can also have the hole in the axial 3z\(^2\)-r\(^2\) level, an unexpected situation that can only be explained with the introduction of the often ignored internal electric field.
1. INTRODUCTION

The search of new and improved functional materials has experienced during the last years a big development with the synthesis of many families of organic-inorganic compounds. These hybrid materials combine the useful electronic properties coming from the inorganic part with the structural versatility of organic molecules giving rise to attractive physico-chemical properties, going far beyond the sum of the properties of its constituent parts.\(^1\)-\(^8\)

In many hybrid compounds, the inorganic component forms layers separated by the organic elements, controlling the dimensionality of the magnetic and electric behavior in the former layer. In recent years, a great deal of investigation has been focused on layered \(RCuX_4\) compounds, where \(R\) is an organic group and \(X\) a halogen. Indeed, very promising results have been obtained with this kind of compounds in the realm of light-emitting diodes\(^8\), solar cells\(^8,9\), multiferroic materials\(^10\)-\(^12\), cathode materials for \(Li^+\)-ion batteries\(^13\) or systems displaying huge piezochromism and thermochromism\(^14\)-\(^16\).

Fig. 1 depicts the experimental crystal structure of \((CH_3NH_3)_2CuCl_4\), a typical example of these copper layered hybrid compounds\(^17\), belonging to the monoclinic \(P2_1/c\) standard space group. It involves staggered layers of corner-sharing \(CuCl_6^{2-}\) octahedra interleaved by alkylammonium cations. According to X-ray diffraction data at \(T = 100\ \text{K}\) there are two ligands placed along the local \(Z\) axis of the \(CuCl_6^{2-}\) unit, which forms a small angle of \(7^\circ\) with the \(L\) vector perpendicular to the layer plane (Fig. 1). The other four ligands are lying in \(X\) and \(Y\) directions nearly contained in the layer plane. The \(Cu^{2+}-Cl\) distance along \(Z\) (\(R_Z = 2.312\ \text{Å}\)) is very close to short metal-ligand distance in the in-plane \(X\) direction, \(R_X = 2.287\ \text{Å}\), but much smaller than the long one in \(Y\) direction, \(R_Y = 2.902\ \text{Å}\) (Table 1). A nearly identical pattern is encountered for other members of the \((C_nH_{2n+1}NH_3)_2CuCl_4\) family (Table 2)\(^18,19\). This situation is thus seemingly similar to that found for \(Cu^{2+}\)-doped cubic lattices, like \(KZnF_3\)\(^20\)-\(^23\) or \(NaCl\)\(^25\)-\(^27\), where the ligand octahedron is elongated and the local symmetry tetragonal as a result of a static Jahn-Teller effect (JTE)\(^28,29\). For this simple reason, it has systematically been accepted\(^9\)-\(^16,30,31\) that the JTE is behind the local distortion around the metal cation in \(RCuCl_4\) compounds. A similar situation holds for purely inorganic materials displaying a layer structure, such as \(K_2CuF_4\)\(^32\)-\(^34\), \(Rb_2CuCl_4\)\(^35\), \(Cs_2AgF_4\)\(^36\) or \(Na_3MnF_6\)\(^37,38\). Under that assumption, the principal axis of the distorted octahedron would however lie in the layer plane, a circumstance which is certainly surprising in view of the axial character displayed by layered compounds.

This work is aimed at clarifying both the origin of the local structure of \(CuX_6^{2-}\) (\(X = Cl, F\)) units in layered copper lattices and the nature of the ground state of that complex as it is a necessary condition for a proper understanding of their associated properties, such as the huge piezochromism observed in some \(RCuX_4\) compounds\(^14\)-\(^16\). A particular attention is paid to explore the influence of an applied pressure on \(Cu^{2+}-X^-\) distances (\(X = Cl, F\)) as it is a crucial test to assess the reliability of the JTE assumption. Indeed, if the local structure around copper is actually due to a JTE the pressure dependence of the short in-plane distance, \(R_X\), and the out-of-plane distance, \(R_Z\), should be the same. As there are no reliable experimental data on this matter\(^30,31,35,39\), we have carried out in
this work first-principles calculations proving that, for all the explored systems, the R₅ distance is much more sensitive to pressure than R₂, such as it is shown in the section of the discussion of results. For this reason, we have later sought to understand the mechanisms that explain the observed local structure and the electronic ground state of the CuX₆⁻ (X = Cl, F) complex. For achieving this goal, we have found that theoretical calculations and available experimental data on Cu²⁺-doped (CH₃NH₃)₂CdCl₄, (CH₃NH₃)₂CuCl₄, K₂CuF₄ play a key role for clarifying this relevant question. As a salient feature, it is shown in this work that the properties of layered copper compounds are influenced by two main factors often ignored: (1) the axial internal electric field felt by electrons localized in the CuX₆⁻ unit, and (2) an orthorhombic instability taking place in the layer plane which is favored in pure compounds by a cooperative mechanism.

2. COMPUTATIONAL METHODS

Periodic geometry optimizations on (CH₃NH₃)₂CdCl₄, (CH₃NH₃)₂CuCl₄, K₂CuF₄ and Rb₂CuCl₄ were firstly performed under the framework of the Density Functional Theory (DFT) by means of the CRYSTAL14 code. In this code, the Bloch wavefunctions are represented by a linear combination of Gaussian basis functions centered at the atomic positions. All ions have been described by means of basis-sets taken directly from CRYSTAL’s webpage. In particular, we have used the all-electron triple-ζ plus polarization (TZP) basis recently developed for Peitinger et al. We have also used the B1WC hybrid exchange-correlation functional (including 16% of Hartree-Fock exchange) that has shown to be able to reproduce with great accuracy the geometry and properties of a large number of both pure and doped crystals. Similar results have been found using other basis sets and the PW1PW hybrid functional (including 20% of Hartree-Fock exchange).

All optimized geometries agree with the experimental values within 2% error, except in the case of (CH₃NH₃)₂CuCl₄, where the lattice parameters and metal-ligand distances are within 5%. This discrepancy is due to the problems inherent to describe a system with relevant van der Walls interactions by means of localized basis sets generated for a general purpose. For this reason, we performed additional calculations with the VASP code that uses a combination of localized orbitals and plane-wave expansions (PAW) as basis sets. We used the HSEsol hybrid functional (with 20% Hartree-Fock exchange) which has been shown to yield accurate lattice constants for solids. A 500 eV cutoff energy was used, and a Monkhorst-Pack of 2x2x2 and 3x1x3 were chosen as k-point mesh for the (CH₃NH₃)₂CuCl₄ and (CH₃NH₃)₂CdCl₄ systems, respectively. Geometries were relaxed until forces were lower than 0.02 Å/eV.

Calculations on Cu²⁺-doped (CH₃NH₃)₂CdCl₄, where Cu²⁺ impurity enters replacing a Cd²⁺ ion of the lattice, were performed both with CRYSTAL14 and VASP codes, using a periodic conventional cell containing 84 ions with the lattice parameters fixed at the experimental values. The results were very similar with both codes.
In order to explore whether the orthorhombic instability also appears in mixed $K_2Cu_xZn_{1-x}F_4$ crystals ($0 < x \leq 1$) we have performed calculations in the tetragonal I4/mmm space group and using an in-plane doubled supercell of size $\sqrt{2} \times \sqrt{2} \times 1$.

For each crystal structure considered in this work we have calculated the electrostatic potential $V_R(r)$ felt by the electrons localized in the MX_6^4 ($M = Cu^{2+}, Cd^{2+}; X = F, Cl$) complex due to all lattice ions lying outside. Although often ignored, the $V_R(r)$ potential is the actual responsible for the ground state of K_2CuF_4:Cu$^{2+}$ or the different color displayed by ruby, emerald or alexandrite gemstones. Calculations have been performed by means of the Ewald method, following the procedure described in. In these calculations we have used the ionic charges obtained in the first-principles geometry optimizations.

The present work is mainly focused on the local structure and ground state of CuX_6^4 ($X = Cl, F$) complexes in copper layered compounds. Although we do not discuss in detail the problem of exchange interaction among complexes, we have verified that the local structure and atomic orbital contributions are essentially independent on the magnetic order. So, the calculated Cu^{2+}-F distances in K_2CuF_4 vary relatively by less than $5 \cdot 10^{-4}$ when changing from a ferromagnetic to an antiferromagnetic structure.

3. RESULTS AND DISCUSSION

3.1 Equilibrium geometry at zero pressure

In a first step we have calculated the equilibrium geometry of the hybrid perovskite $(CH_3NH_3)_2CuCl_4$ (monoclinic $P2_1/c$ space group, Fig. 1) and also that for inorganic layered lattices K_2CuF_4 (Fig. 2) and Rb_2CuCl_4 (Fig. 3), both of them belonging to the orthorhombic Cmca standard space group. Results are displayed on Table 1.

Additional calculations have also been performed on $(CH_3NH_3)_2CdCl_4$ as it is a necessary step for a further study of $(CH_3NH_3)_2CdCl_4:Cu^{2+}$, where Cu$^{2+}$ enters as impurity, which is developed in sections 3.3 and 3.4. It is worth noting that, although $(CH_3NH_3)_2CdCl_4$ belongs to the orthorhombic Cmca group, the local geometry around Cd$^{2+}$ is tetragonal, that is $R_s = R_L$ (Table 1).

The calculated lattice constants and metal-ligand distances for these compounds are collected in Table 1 and compared to experimental findings. We can see that simulations capture the geometry of these systems with high accuracy, with errors in the predicted distances below 1% in most cases. The only significant discrepancy occurs in $(CH_3NH_3)_2CuCl_4$ where distances obtained with the CRYSTAL code diverge to up to 5%. The main problem here resides in the use of localized basis sets that do not capture with sufficient accuracy the van der Waals interactions due to the organic part of the lattice. We find that, either using the more detailed Plane-Augmented-Wave (PAW) basis-sets in VASP code or when fixing the lattice constants to the experimental ones in CRYSTAL code, we obtain very satisfactory results on metal-ligand distances (Table 1).
It is worth noting in Table 1 that, at variance with the local tetragonal geometry for (CH$_3$NH$_3$)$_2$CdCl$_4$, in the three pure copper compounds the in-plane Cu$^{2+}$-X distance (X = Cl, F), R_u, is certainly longer (\sim0.3-0.6 Å) than R_S and R_T. Interestingly, the values of R_S and R_T distances are not equal although they are very close, the difference $R_T - R_S = 0.03$ Å and 0.05 Å for (CH$_3$NH$_3$)$_2$CuCl$_4$ and Rb$_2$CuCl$_4$, respectively. These facts already cast some doubts on the JTE assumption as the two Cu$^{2+}$-Cl$^{-}$ distances in the plane perpendicular to the expected principal axis should be equal. The reliability of that assumption is examined in detail exploring the pressure dependence of R_S, R_T and R_L distances in the next section.

3.2 Influence of a hydrostatic pressure on Cu$^{2+}$-X$^{-}$ distances of layered compounds

Several studies have shown the high sensitivity of the properties, like optical absorption,$^{14-16}$ to the modification of the structure as, for example, when applying pressure. However, a precise determination of the pressure dependence of three Cu$^{2+}$-X$^{-}$ distances is not a simple experimental task. For instance the X-ray diffraction data on powder samples of (CH$_3$NH$_3$)$_2$CuCl$_4$ are not sensitive enough to reveal the pressure dependence of R_S and R_T distances.31 On the other hand, in Rb$_2$CuCl$_4$ the analysis of data has been carried out under the assumption $R_S = R_L$ for every applied pressure.

Seeking to clarify this key issue we have explored, in a first step, the changes induced by an external pressure upon the lattice parameters and Cu$^{2+}$-Cl$^{-}$ distances of (CH$_3$NH$_3$)$_2$CuCl$_4$ keeping the $P2_1/c$ space group. It is worth noting that under hydrostatic conditions all surfaces of a given sample are subject to the same pressure although the strain generated in the system is not isotropic for non-cubic crystals. Results obtained through ab initio calculations with the VASP code are displayed in Fig. 4 and Table 2. As a salient feature they show that the out-of-plane distance, R_T, is practically unaffected by the application of pressure as it increases by only 0.5% from zero pressure to $P = 20$ GPa. By contrast, much bigger variations are found for the short in-plane distance along the X axis, R_S, as it is reduced by 7.2% in the same range of pressure. This big difference is thus against the common idea of a JTE as responsible for the local structure in (CH$_3$NH$_3$)$_2$CuCl$_4$. As it could be expected, the biggest effect is found for the longest Cu$^{2+}$-Cl$^{-}$ distance, R_u, that is reduced by 0.69 Å (23.7%) under a hydrostatic pressure of 20 GPa. This fact is consistent with experimental data on hybrid RCuCl$_4$ compounds showing that the longest Cu$^{2+}$-Cl$^{-}$ distance is also the most sensitive to the change of the R group and the associated chemical pressure (Table 3).

Interestingly, we find that when the pressure $P > 15$ GPa the out-of-plane Cu$^{2+}$-Cl$^{-}$ distance, R_T, becomes the longest metal-ligand distance while the in-plane ones, R_S and R_u, differ only by less than 7%. In other words, in that situation the system becomes quasi-tetragonal with the long bond of the octahedron aligned with the axis perpendicular to the Cu$^{2+}$-layers. In order to check that the structures obtained in our calculations corresponded with the most stable situation we carried out vibrational frequency calculations for the high-symmetry configuration at each pressure. We find that only the modes associated to the orthorhombic distortions at M_0 and T_0 lead to
instabilities corroborating that the structures previously reported are, energetically, the most stable.

To our knowledge there are no X-ray data for (CH$_3$NH$_3$)$_2$CuCl$_4$ under pressure. By contrast, resonant x-ray scattering measurements on powder samples of (C$_2$H$_5$NH$_3$)$_2$CuCl$_4$ under pressures up to 4 GPa have been reported by Ohwada et al.31 However, due to the low experimental resolution, they were unable to detect the changes due to pressure on R_l and R_S distances although they found that R_l is highly sensitive. Indeed, although the dependence of R_l with pressure is not linear, this quantity decreases by \sim0.4 Å due to an applied pressure of 4 GPa.

The calculated pressure dependence of three metal-ligand distances in K$_2$CuF$_4$, portrayed in Fig. 5, shows a similar behavior to that found for (CH$_3$NH$_3$)$_2$CuCl$_4$ (Fig. 4). For instance, a pressure of 8.7 GPa is found to reduce the value of R_S by 2.5%, while R_Z experiences no change. Again, the biggest variation corresponds to the long Cu$^{2+}$-F$^-$ distance, R_u, that is reduced by 7%.

Interestingly, the results of Fig. 5 also show that pressure tends to reduce the value of R_l- R_S thus recovering a nearly elongated tetragonal symmetry of the CuF$_6^{4-}$ unit with Z as principal axis. For instance, for a hydrostatic pressure $P = 60$ GPa and an orthorhombic Cmca space group the calculated Cu$^{2+}$-F$^-$ distances are $R_S = 1.72$ Å, $R_l = 1.78$ Å and $R_Z = 1.94$ Å.

It is worth noting that such distances obtained for $P = 60$ GPa describe a slightly elongated CuF$_6^{4-}$ complex but with an unpaired electron residing in a \sim3z^2-r^2 orbital as it is well found in the calculations. This situation cannot happen for a Cu$^{2+}$ ion in a cubic lattice where a subsequent JTE necessarily places such an electron in the \simx2-y^2 orbital if the equilibrium geometry is elongated. As it will be discussed in detail in section 3.4 this behavior is due to the presence of a very anisotropic electrostatic potential, V$_{6b}$(r) created by the rest of lattice ions on the electrons localized in the CuF$_6^{4-}$ complex. This internal electric field makes possible that the hole can still be in the \sim3z^2-r^2 orbital despite the local geometry is slightly elongated. Accordingly, we have verified that the calculated gap between x2-y^2 and 3z^2-r^2 levels when $P = 60$ GPa is reduced by 50% when compared to that at ambient pressure for the I4/mmm structure but 3z^2-r^2 is still the highest level. The existence of this surprising situation for non-JTE systems was previously discussed.63

Calculations carried out on Rb$_2$CuCl$_4$ under pressure (Fig. 5) provide a similar pattern to those for (CH$_3$NH$_3$)$_2$CuCl$_4$ and K$_2$CuF$_4$. Indeed, for a pressure of 10 GPa R_l is reduced by 0.36 Å (13%) while R_S by 0.10 Å (4.4%) and again R_Z is found to be much less sensitive to pressure. These values are thus comparable to those found for (CH$_3$NH$_3$)$_2$CuCl$_4$ (Fig. 4 and Table 2). Moreover, the data conveyed in Fig. 5 for Rb$_2$CuCl$_4$ indicate that for a pressure around 20 GPa R_l and R_S become very close. In such a case, the local geometry would practically correspond to an elongated octahedron in the out-of-plane direction but with a hole located in \sim3z^2-r^2 as it has also been found for K$_2$CuF$_4$.

6
Concerning experimental data, Ishizuka et al.39 have explored the pressure dependence of lattice parameters on K\textsubscript{2}CuF\textsubscript{4} but not of three Cu2+-F− distances. In the case of Rb\textsubscript{2}CuCl\textsubscript{4}, X-ray Diffraction (XRD) and Extended X-Ray Absorption Fine Structure (EXAFS) measurements have been carried out under pressures up to 15 GPa35. From XRD data it can be concluded that the long Cu2+-Cl− distance, R\textsubscript{u}, is reduced by \(~\sim\~0.30 \text{ Å}\) on passing from P = 0 to P = 10 GPa, in reasonable agreement with present calculations for Rb\textsubscript{2}CuCl\textsubscript{4}. Unfortunately, for the analysis of these experimental EXAFS data it was assumed35 that the local geometry for Rb\textsubscript{2}CuCl\textsubscript{4} is the result of an elongated JTE, and thus R\textsubscript{5} = R\textsubscript{2} for every applied pressure. This artificial constraint when analyzing the experimental data prevents extracting the significant differences between R\textsubscript{5} and R\textsubscript{2} reported in this work. Moreover, from the analysis of EXAFS data it is concluded that \(\Delta R\textsubscript{u}/\Delta P = -0.012 \text{ Å/GPa}\), a quantity that is nearly three times smaller than that derived from XRD and the present calculations. Although this discrepancy has been ascribed to the existence of a significant tilting in the CuCl\textsubscript{6}4− octahedra35, no tilting is found in the present ab initio calculations in the P = 0 – 20 GPa range. Such a discrepancy can arise from the reduced number of detected EXAFS oscillations, such as it is recognized in the experimental work35.

The present results thus prove that the calculated pressure dependence for several layered copper compounds cannot be explained under the usual assumption of a JTE9-16,30-35. For clarifying the actual origin of the local structure in these layered systems and the nature of the electronic ground state an insight on (CH\textsubscript{3}NH\textsubscript{3})\textsubscript{2}CdCl\textsubscript{4}:Cu2+, where Cu2+ enters as impurity40, sheds light on this relevant matter. A study on that system is carried out in the next section.

3.3 Calculated equilibrium geometry and ground state for (CH\textsubscript{3}NH\textsubscript{3})\textsubscript{2}CdCl\textsubscript{4}:Cu2+: Analysis of experimental data

As shown in Table 1 and Fig. 6 the local geometry around Cd2+ in (CH\textsubscript{3}NH\textsubscript{3})\textsubscript{2}CdCl\textsubscript{4} is tetragonal (R\textsubscript{5} = R\textsubscript{L}) displaying a slightly compressed octahedron (R\textsubscript{2} = 2.54 Å, R\textsubscript{5} = 2.64 Å). The calculated Cd2+-Cl− distances for this pure compound coincide within 1% with experimental values (Table 1). For this reason, we have calculated, as a first step, the equilibrium distances in (CH\textsubscript{3}NH\textsubscript{3})\textsubscript{2}CdCl\textsubscript{4}:Cu2+ assuming the same D\textsubscript{4h} local symmetry around the impurity, and the results are displayed in Table 4.

When the optimization is constrained to the D\textsubscript{4h} local symmetry by the condition R\textsubscript{5} = R\textsubscript{L} the equilibrium geometry of the CuCl\textsubscript{6}4− unit is found to correspond to a compressed octahedron whose principal axis is the local Z axis, that forms a small angle of 7° with the crystal b axis. In that situation, the unpaired electron is lying in the a\textsubscript{1g} \sim 3z2-r2 molecular orbital of the complex. Nevertheless, as shown in Table 4, the quantity R\textsubscript{3} - R\textsubscript{2}, reflecting the tetragonality of the complex, is three times bigger than that for the Cd2+ octahedron (Table 1). This situation, somewhat similar to that found for the CuF\textsubscript{6}4− unit in Ba\textsubscript{2}ZnF\textsubscript{6}:Cu2+ 23, points out that in (CH\textsubscript{3}NH\textsubscript{3})\textsubscript{2}CdCl\textsubscript{4}:Cu2+ the tetragonality around the open shell cation, Cu2+, is enhanced with respect to that found for the CdCl\textsubscript{6}4− unit. As recently proved for the layered systems Ba\textsubscript{2}ZnF\textsubscript{6}:Cu2+ 23 or K\textsubscript{2}ZnF\textsubscript{4}:Cu2+ 56, this effect is greatly due to the anisotropic internal electric field, \(E\textsubscript{z}(r)\), generated by the electrostatic
potential, \(V_n(r) \), felt by the electrons localized in the complex due to all lattice ions lying outside. It is worth noting that \(V_n(r) \) can induce shifts up to \(\sim 1 \) eV on optical transitions\(^{64}\) and is responsible for the different color displayed by \(\text{Cr}^{3+}\)-based gemstones\(^{57}\).

The shape of the \(V_n(r) \) potential for (CH\(_3\)NH\(_3\))\(_2\)CdCl\(_4\):Cu\(^{2+}\) is depicted in Fig. 6. It can be remarked that the anisotropic \(V_n(r) \) potential increases the energy of an electronic density along the Z axis with respect to that located in the layer plane. This fact thus creates a gap between \(b_{1g} \sim x^2 - y^2 \) and \(a_{1g} \sim 3z^2 - r^2 \) molecular orbitals even if \(R_S = R_L = R_Z \), forcing the hole to be placed in the \(a_{1g} \sim 3z^2 - r^2 \) single orbital\(^{56,22}\). The lack of orbital degeneracy when the \(\text{CuCl}_6^{4-} \) unit in (CH\(_3\)NH\(_3\))\(_2\)CdCl\(_4\) is perfectly octahedral underlines the absence of a JTE in this system such as it happens for the \(\text{CuF}_6^{4-} \) complex formed in Cu\(^{2+}\)-doped the layered K\(_2\)ZnF\(_4\) or Ba\(_2\)ZnF\(_6\) compounds\(^{23,56}\). Moreover, a hole placed in a ~3\(z^2 - r^2\) orbital with a mainly axial character favors the reduction of the axial distance\(^{56}\) and thus a compressed local conformation with \(R_Z \) = 2.27 Å. This reasoning thus explains, albeit qualitatively, why the equilibrium geometry of the \(\text{CuCl}_6^{4-} \) unit in (CH\(_3\)NH\(_3\))\(_2\)CdCl\(_4\) would correspond to a compressed octahedron assuming a local tetragonal symmetry (Table 4). It is worth noting that in such a case the equatorial metal-ligand distance, \(R_S = R_L = 2.56 \) Å, would be around 0.20 Å higher than that for an elongated \(\text{CuCl}_6^{4-} \) unit\(^{65}\).

Nevertheless, as it is shown on Table 4, the present calculations on (CH\(_3\)NH\(_3\))\(_2\)CdCl\(_4\):Cu\(^{2+}\) strongly support that the tetragonal geometry around Cu\(^{2+}\) is unstable thus leading to a local orthorhombic symmetry involving two different values for the in-plane Cu\(^{2+}\)-Cl\(^-\) distances, \(R_S \) and \(R_L \). Due to this instability \(R_L (R_S) \) increases (decreases) by about 0.12 Å on passing from D\(_{4h}\) to a D\(_{2h}\) local symmetry. By contrast, the out-of-plane distance, \(R_Z \), remains practically constant as it only increases by \(\sim 1\% \) in the symmetry lowering process. It should already be noted that the calculated \(R_Z \) values for (CH\(_3\)NH\(_3\))\(_2\)CdCl\(_4\):Cu\(^{2+}\) (Table 4) are only 1.7% smaller than \(R_Z = 2.312 \) Å measured for the pure compound (CH\(_3\)NH\(_3\))\(_2\)CuCl\(_4\) at \(T = 100 \) K (Table 1)\(^{17}\). Values of \(R_Z \) in the range 2.28 Å - 2.29 Å have been reported for (C\(_n\)H\(_{2n+1}\)NH\(_3\))\(_2\)CuCl\(_4\) compounds with \(n = 2, 3 \) (Table 3)\(^{18,19}\).

The existence of this orthorhombic instability implies that the force constant associated with the \(B_{1g} \) local mode becomes negative\(^{66}\), a fact which again cannot be associated with a JTE. Indeed, in a static JTE, taking place under an initial cubic symmetry, the force constant is always positive and the distortion arises from an electronic density that exhibits a lower symmetry thus producing a different force on axial and equatorial ligands\(^{67,29}\).

Two main consequences are behind the orthorhombic instability derived for (CH\(_3\)NH\(_3\))\(_2\)CdCl\(_4\):Cu\(^{2+}\). On one hand, the energy for the tetragonal D\(_{4h}\) conformation has to be higher than that for the orthorhombic D\(_{2h}\) local symmetry. Calling \(B \) such a difference we have found in our calculations that \(B = 0.40 \) eV. On the other hand, according to the symmetry of the host lattice there are two equivalent orthorhombic distortions, as shown in Fig. 6. Indeed, the short in-plane distance, \(R_S \), can be either along the \(X' \) or the \(Y' \) direction of the host lattice in Fig. 6. If the transition state between these two distortions corresponds to the tetragonal conformation (\(R_S = R_L = 2.560 \) Å, \(R_Z = 2.257 \) Å) then the barrier between the two equivalent distortions would be \(B = 0.40 \) eV.
Bearing the results of calculations in mind let us now analyze the available EPR results on \((\text{CH}_3\text{NH}_3)_2\text{CdCl}_4:\text{Cu}^{2+}\). As shown in Fig. 7, the experimental \(g\)-tensor at \(T = 10\) K displays a clear orthorhombic pattern, a fact consistent with the instability derived from the present calculations (Table 4). Indeed there is a clear difference between the two components of the \(g\)-tensor corresponding to the layer plane, \(g_x = 2.12\) and \(g_y = 2.33\), supporting that the in-plane \(\text{Cu}^{2+}\text{-Cl}^-\) distances, \(R_s\) and \(R_t\), are actually different. In this case, the \(X\) and \(Y\) directions correspond to the short and long in plane directions, respectively. Both \(g_X - g_0\) and \(g_Y - g_0\) shifts are larger than \(g_Z - g_0 = 0.05\) thus pointing out a significant difference between the \(Z\) direction and the layer plane.

With respect to the temperature dependence of the \(g\)-tensor in the 10 K - 250 K, experimental results (Fig. 7) indicate that \(g_Y\) decreases and \(g_X\) increases when temperature is raised while \(g_Z\) remains essentially constant. The results of Fig. 7 imply the existence of jumps between the two equivalent positions depicted in Fig. 6 whose frequency increases with temperature. This means that in the time of measurement the short \(X\) axis is moving from the \(X^-'\) to the \(Y^-'\) direction of the host lattice in Fig. 6. As shown in Fig. 7, no average signal corresponding to \(<g> = (g_x + g_y)/2\) is observed up to 250 K although such a signal with \(<g> = 2.24\) has been detected at higher temperatures\(^{50}\).

Despite the incoherent dynamical behavior displayed by the experimental \(g\)-tensor in Fig. 7 partially reminds that for a static JTE in cubic lattices there are however significant differences. On one hand, in cases like \(\text{NaCl:Cu}^{2+}\), \(\text{KZnF}_2:\text{Cu}^{2+}\), \(\text{KCl:Ag}^{2+}\) there are three and not two equivalent distortions while for \((\text{CH}_3\text{NH}_3)_2\text{CdCl}_4:\text{Cu}^{2+}\) the local \(Z\) axis is *fixed* in the 10 K - 250 K temperature range as shown in Fig. 7. On the other hand, for systems with a static JTE the average signal is observed for temperatures, \(T_h\), in the range 30 K - 180 K\(^{23,25-27}\) while for \((\text{CH}_3\text{NH}_3)_2\text{CdCl}_4:\text{Cu}^{2+}\) the average spectrum with \(<g> = (g_x + g_y)/2\) is not yet observed at 250 K. In systems with a static JTE, \(T_h\) has been shown to reflect the barrier among equivalent distortions and so \(T_h = 160\) K for \(\text{KCl:Ag}^{2+}\) is related to a calculated barrier \(B = 0.12\) eV\(^{27}\). The present calculations on \((\text{CH}_3\text{NH}_3)_2\text{CdCl}_4:\text{Cu}^{2+}\) giving \(B = 0.40\) eV are thus qualitatively consistent with the lack of an average signal at \(T = 250\) K.

As a salient feature, the small experimental \(g_Z - g_0 = 0.05\) shift suggests that, despite the orthorhombic distortion in \((\text{CH}_3\text{NH}_3)_2\text{CdCl}_4:\text{Cu}^{2+}\), the wavefunction of the unpaired electron keeps a dominant \(\sim 3z^2-r^2\) character\(^{68}\). The \(D_{4h} \rightarrow D_{2h}\) symmetry lowering makes that the orbital \(\sim 3z^2-r^2\) can be hybridized with the \(\sim x^2-y^2\) one and thus the wavefunction, \(|\psi\rangle\), of the unpaired electron can shortly be written as

\[
|\psi\rangle = \lambda \left| -3z^2-r^2 \right> + \mu \left| -x^2-y^2 \right>
\]

(1)

where \(\lambda^2 + \mu^2 = 1\). As an electron in a pure \(3z^2-r^2\) orbital and \(D_{4h}\) symmetry gives no contribution to \(g_Z - g_0\) in second-order perturbations\(^{69}\) the positive experimental \(g_Z - g_0 = 0.05\) value found in \((\text{CH}_3\text{NH}_3)_2\text{CdCl}_4:\text{Cu}^{2+}\) can mainly be ascribed to the admixture embodied in Eq. (1) induced by the \(D_{4h} \rightarrow D_{2h}\) symmetry reduction. In systems like \(\text{NaCl:Cu}^{2+}\) the unpaired electron of the CuCl\(_6^{2-}\) unit resides in a pure \(\sim x^2-y^2\) orbital as a result of an elongated tetragonal symmetry induced by a static JTE\(^{24,28}\). As in that case it
has been measured $g_\gamma(x^2-y^2) = 2.37$ then we can estimate $\mu^2 \approx 13\%$ for (CH$_3$NH$_3$)$_2$CdCl$_4$:Cu$^{2+}$. Moreover, it has been pointed out69 that μ can also be estimated from experimental $g_\gamma - g_x$ and $<g>$ values through the relation

$$g_\gamma - g_x \cong (4\mu/\sqrt{3}) (<g> - g_0) \quad (2)$$

If we use the experimental values $g_\gamma - g_x = 0.21$ and $<g> - g_0 = 0.24$ 40 we estimate $\mu^2 \approx 14\%$. These facts thus prove that the wavefunction of the unpaired electron actually has a dominant $\sim 3z^2-r^2$ character thus implying that the density along the Z axis is different from that along Y or X axes. This conclusion is thus in agreement with the axial character displayed by layered lattices like (CH$_3$NH$_3$)$_2$CdCl$_4$.

It is worth noting that an orthorhombic instability similar to that found for (CH$_3$NH$_3$)$_2$CdCl$_4$:Cu$^{2+}$ has also been observed in another insulating compound doped with Cu$^{2+}$. Indeed in NH$_4$Cl crystals grown in acidic solutions the CuCl$_4$(H$_2$O)$_2^-$ complex is formed whose local symmetry below $T = 20$ K is not tetragonal but orthorhombic$^{69-72}$. Again, if Z corresponds to the Cu$^{2+}$ - O$^2-$ direction the wavefunction of the unpaired electron has been proved to display a strong $\sim 3z^2-r^2$ character69,71. Indeed, it has been derived $\mu^2 \approx 10\%$ although the estimated orthorhombic distortion $R_L - R_S \cong 0.50$ Å is a bit higher than that calculated for (CH$_3$NH$_3$)$_2$CdCl$_4$:Cu$^{2+}$ 69.

The instability in the equatorial plane of (CH$_3$NH$_3$)$_2$CdCl$_4$:Cu$^{2+}$ under a local tetragonal symmetry is helped by an equatorial Cu$^{2+}$-Cl$^-$ distance, $R_S = R_L = 2.56$ Å (Table 4), which is ~ 0.20 Å higher than that for an elongated CuCl$_6^{4-}$ unit65. This fact tends to reduce the force constant of the B$_{1g}$ local mode. Moreover, there is a negative contribution to the ground state force constant66 that plays a key role for reaching an unstable situation, a matter commented on in section 3.5. The microscopic origin of the orthorhombic instability of CuCl$_4$(H$_2$O)$_2^-$ complex in NH$_4$Cl has previously been discussed in some detail69.

3.4 Origin of the ground state and equilibrium geometry in pure layered compounds containing Cu$^{2+}$

We have seen in the preceding section that the local geometry and ground state of (CH$_3$NH$_3$)$_2$CdCl$_4$:Cu$^{2+}$ are governed by two main factors: (1) An internal electric field that under an imposed D_{4h} symmetry ($R_L = R_S$) places the hole in the $\sim 3z^2-r^2$ orbital thus favoring a compressed geometry. (2) An additional orthorhombic instability, induced by a negative force constant of the local B$_{1g}$ mode, making $R_L \neq R_S$ but keeping the hole in an orbital with a dominant $\sim 3z^2-r^2$ character. We are going to see that these ideas also explain the local geometry observed for pure copper layered compounds and the associated electronic ground state.

Indeed, in inorganic layered compounds like K$_2$CuF$_4$ or Rb$_2$CuCl$_4$ the shape of $V_\theta(r)$ (Figs. 2 and 3) is similar to that found for a hybrid layered compound (Fig. 6). The axial form of this potential would place the hole in a $\sim 3z^2-r^2$ orbital thus favoring a local compressed tetragonal geometry56. For this reason, we have calculated the Cu$^{2+}$-X distances in K$_2$CuF$_4$ and Rb$_2$CuCl$_4$ assuming the higher symmetry $I4/mmm$ of the parent
structure, and thus the local geometry around Cu$^{2+}$ is tetragonal. As shown in Table 1, in such a case we obtain a compressed tetragonal geometry around Cu$^{2+}$. However, the calculations also prove that the tetragonal I4/mmm is not stable. In the case of K$_2$CuF$_4$ we have found a local B$_{1g}$ mode with imaginary frequency $\hbar \omega(B_{1g}) = 303i$ cm$^{-1}$. Therefore, the associated force constant is negative and thus the lattice is not stable with respect to a local orthorhombic distortion. By contrast, when calculations on K$_2$CuF$_4$ and Rb$_2$CuCl$_4$ are carried out without any restriction we obtain a stable situation for the Cmca structure (Table 1).

It is worth noting now that the orthorhombic distortion derived for (CH$_3$NH$_3$)$_2$CdCl$_4$:Cu$^{2+}$ (Table 4) is clearly smaller than that measured for RCuCl$_4$ pure compounds (Table 3). Indeed, the calculated R$_L$ - R$_S = 0.25$ Å value for (CH$_3$NH$_3$)$_2$CdCl$_4$:Cu$^{2+}$ is ≈ 2.5 times smaller than the figure reported for pure RCuCl$_4$ compounds (Table 3). Similarly, there is an orthorhombic instability in the pure compound K$_2$CuF$_4$ while it is absent in K$_2$ZnF$_4$:Cu$^{2+}$ where the local structure corresponds to a compressed octahedron.

Seeking to shed light on this issue, we have calculated the B$_{1g}$ frequency on K$_2$Cu$_x$Zn$_{1-x}$F$_4$ mixed crystals. For x ≈ 0 (K$_2$ZnF$_4$) $\hbar \omega(B_{1g}) = 317$ cm$^{-1}$ and for x = 0.25 $\hbar \omega(B_{1g}) = 84$ cm$^{-1}$ but when x = 0.75 $\hbar \omega(B_{1g}) = 416i$ cm$^{-1}$, that is, the orthorhombic instability comes out. These results thus suggest that the orthorhombic distortion can appear more easily in layered Cu$^{2+}$ compounds which share ligands than in the case of isolated CuX$_6^{2-}$ complexes (X = F, Cl) embedded in host lattices with closed shell cations like Zn$^{2+}$ or Cd$^{2+}$. This relevant issue is discussed in the next section.

As regards the nature of the ground state, the available experimental g_z values for the RCuCl$_4$ compounds (Table 3) essentially coincide with the experimental figure $g_z = 2.05$ for (CH$_3$NH$_3$)$_2$CdCl$_4$:Cu$^{2+}$, a fact that suggests an unpaired electron in a mainly $\sim 3z^2$-r2 orbital. In other words, although the orthorhombic distortion in RCuCl$_4$ compounds, R$_L$ - R$_S \sim 0.65$ Å, is clearly higher than that for (CH$_3$NH$_3$)$_2$CdCl$_4$:Cu$^{2+}$, where Cu$^{2+}$ enters as impurity, in both cases the wavefunction of the unpaired electron keeps a dominant 3z2-r2 character. This standpoint is confirmed by the present calculations on (CH$_3$NH$_3$)$_2$CuCl$_4$ leading to a wavefunction of the unpaired electron with $\sim 80\%$ of 3z2-r2 character, a fact that can partially be connected with an out-of-plane distance, R$_z$, which is nearly unmodified on passing from the doped to the pure RCuCl$_4$ compounds (Table 3). A support to this idea also comes from previous calculations on CuCl$_4$(H$_2$O)$_2$: units in NH$_4$Cl yielding $\mu^2 \approx 15\%$ even if R$_L$ - R$_S = 0.65$ Å.

The situation found for K$_2$CuF$_4$ is rather similar to that for RCuCl$_4$ compounds. Indeed, the wavefunction of the unpaired electron at the equilibrium geometry has been shown to exhibit a dominant $\sim 3z^2$-r2 character (17%) in spite of the orthorhombic distortion described by R$_L$ - R$_S = 0.29$ Å (Table 1). This value of the hybridization coefficient, μ_3, is consistent with the experimental value $g_z = 2.08$ for K$_2$CuF$_4$ and the value $g_z = 2.65$ measured for CsCdF$_3$:Cu$^{2+}$ where the unpaired electron of the CuF$_6^{2-}$ unit lies in a pure $\sim x^2$-y^2 orbital.
Bearing in mind the present reasoning and previous results on copper layered materials, we see that an applied pressure tends to suppress the orthorhombic distortion and not the JTE such as it is widely said in the scientific literature. It should be noted that in a genuine JTE system pressure can promote the transition from a static to a dynamic regime with coherent tunneling among the equivalent distortions. Even in that regime, pressure can increase the value of the tunneling splitting but it will never destroy the JTE.

3.5 Origin of the orthorhombic instability in pure and doped compounds

As discussed in the previous section, the orthorhombic instability displayed by pure compounds like (CH₃NH₃)₂CuCl₄ or K₂CuF₄ is either smaller or not observed in doped systems like (CH₃NH₃)₂CdCl₄:Cu²⁺ or K₂ZnF₄:Cu²⁺. It is thus relevant to clear up the kind of cooperative effect favoring the instability of pure layered compounds with respect to systems where Cu²⁺ enters as impurity.

A non-symmetric distortion mode of a molecule is unstable if the associated force constant, K, of the ground state is negative. In general, there are two contributions to K. One, termed K₀, is only related to the wavefunction, Ψ₀, corresponding to the undistorted situation. By contrast, the other one reflects the changes of the wavefunction driven by the distortion and the electron-vibration coupling. That contribution is negative for the ground state and is termed -Kᵥ, so K = K₀ - Kᵥ. Accordingly, the condition for instability is simply Kᵥ > K₀. Now, as Kᵥ reflects the admixture of excited states with Ψ₀ through the electron-vibration coupling, this quantity is more important for Cu²⁺ complexes than for those cations with closed shell configuration, like Zn²⁺ or Cd²⁺, where first excitations appear, in general, at higher energies. Thus, if we designate by Kᵥ(open) and Kᵥ(close) the contribution for complexes with open or closed shell cations we expect Kᵥ(open) >> Kᵥ(close).

When Cu²⁺ enters as impurity in a lattice like K₂ZnF₄ the electronic density is localized in the complex formed with nearest anions. If we now consider the B₁g mode (Fig. 8) described by the Q coordinate

\[Q = (1/2)(u_1 - u_2 + u_3 - u_4) \quad u_1 = -u_2 = u_3 = -u_4 = u \] (3)

the variation of elastic energy associated with the complex is just given by 2[K₀ - Kᵥ(open)]u². It should be remarked now that as the complex is embedded in a lattice (Fig. 8) the motion of ligands also imply the activation of springs associated with M²⁺ - X⁻ bonds (M = Zn) giving rise to an additional contribution to the elastic energy. If, for simplicity, we assume the same value of K₀ for Cu²⁺ and M²⁺ complexes this contribution is just given by 2[K₀ - Kᵥ(close)]u². Accordingly, the requirement for a negative value for the total elastic energy is

\[Kᵥ(open) + Kᵥ(close) > 2K₀ \] (4)

Nevertheless, if we consider a pure compound of Cu²⁺ (Fig. 8) and activate the B₁g mode for every complex the elastic energy per complex is 2[K₀ - Kᵥ(open)]u² and the instability condition is
Thus, if \(K_{V(open)} >> K_{V(close)} \) the instability can appear more easily in a pure compound than for an isolated impurity.

As we have seen, in the present layered \(\text{Cu}^{2+} \) compounds the internal electric field favors, in principle a compressed conformation where the equatorial metal-ligand distance, \(R_S = R_L \), is higher than the axial distance, \(R_Z \). This fact alone helps to decrease the value of \(K_0 \) corresponding to the \(B_{1g} \) mode that involves only equatorial ligands thus favoring the appearance of the instability\(^{69,42} \).

The origin of \(K_{V(open)} \) in the case of \(\text{CuCl}_4(\text{H}_2\text{O})_2^{2-} \) complexes in \(\text{NH}_4\text{Cl} \) has previously been explored showing that \(\text{Cl}^- \rightarrow \text{Cu}^{2+} \) charge transfer excitations are responsible for the observed orthorhombic distortion\(^{69} \). A general view on the origin of \(K_0 \) and \(K_V \) contributions is provided in Ref.\(^{78} \).

4. Final Remarks

In this work we have derived from first-principles calculations the pressure dependence of \(\text{Cu}^{2+}-\text{X}^- \) (\(\text{X} = \text{Cl}, \text{F} \)) distances in copper layered compounds. As up to now there are not reliable experimental data on the sensitivity to pressure of \(R_Z, R_S \) and \(R_L \) distances the information provided in this work can be valuable for a further insight into properties displayed by these layered systems and in particular the large piezochromic effect observed in \(\text{RCuCl}_4 \) compounds\(^{14-16} \).

As a main result, we have shown in this work that neither the local structure nor the ground state of copper layered compounds can properly be understood under the widely followed assumption of a JTE. Indeed, we have proved that they are strongly influenced by the anisotropic internal field and an additional orthorhombic instability in the layer plane.

The results of this work stress the importance played by the internal electric field, \(E_{\text{R}}(r) \), for a proper understanding of materials containing transition metal complexes. Indeed, that field is greatly responsible for the different ground state of \(\text{K}_2\text{CuF}_4 \) and \(\text{La}_2\text{CuO}_4 \)\(^{42} \) as well as for the color of \(\text{Cr}^{3+} \)-based gemstones\(^{57} \) and the Egyptian Blue pigment\(^{79} \). As \(E_{\text{R}}(r) \) induces shifts up to \(\sim 1\text{eV} \) on optical transitions\(^{67} \) the properties of transition metal systems cannot, in general, be understood considering only the isolated complex. Despite these facts, the influence of this internal field in the interpretation of data from transition metal compounds is still often ignored\(^{80} \).

The existence of \(d^9 \) systems with a hole in a \(\sim 3z^2-r^2 \) orbital in the ground state has been questioned\(^{36} \). The examples given in this work show that such a situation can actually happen. Moreover, even in cases where a genuine JTE takes place one cannot discard a compressed octahedron as equilibrium geometry with a hole in the \(\sim 3z^2 - r^2 \) level. This situation has been found for \(\text{CaO:Ni}^+ \)\(^{81} \), as recently proved\(^{82} \).

The present ideas can also be of interest to explain the properties of \(\text{Ag}^{2+} \) layered compounds, like \(\text{Cs}_2\text{AgF}_4 \), deeply investigated in the last years\(^{36,83-85} \). Calculations carried
out on Cs$_2$AgF$_4$ support that the local structure and ground state of the AgF$_6^{4-}$ complex arise from the same causes discussed in this work for K$_2$CuF$_4$ involving an axial internal electric field and a subsequent orthorhombic distortion in the layer plane. In accord with this view a value $g_z = 2.07$ has recently been measured by EPR for Cs$_2$AgF$_4$85, again compatible with a hole with a dominant 3z2−r2 character.

The local structure in the present layered compounds is found to be independent on the magnetic order. Supporting this view, the calculated Cu$^{2+}$-F$^-$ distances in K$_2$CuF$_4$ vary relatively by less than 5·10$^{-4}$ on passing from a ferromagnetic to an antiferromagnetic order while the energy difference between these two configurations is equal only to 5 meV. This figure is thus much smaller than the energy gain due to the internal electric field or the orthorhombic instability, which are both in the range 0.1-1 eV. According to this argument, it can hardly be accepted that the orbital ordering and local structure in a layered compound like K$_2$CuF$_4$ are not determined42 by the weak exchange interactions, which is the foundation of the Kugel–Khomskii model86. This conclusion is reinforced by performing an analysis of the atomic orbital contributions for the various magnetic states that yield very similar results. In this way we can resolve that our initial conclusions are independent of the spin state of the lattice as a whole.

As a final comment, the results reached in this work open a window for a proper understanding of the unusual ferromagnetism of the copper layered compounds and the surprising piezochromism displayed by these materials. Indeed, experimental results prove that charge transfer transitions are red-shifted by an applied pressure14,15. This fact is in principle puzzling as experimental87 and theoretical data88 on charge transfer transitions of square-planar CuCl$_4^{2-}$ complexes show that they move to the blue when the Cu$^{2+}$-Cl$^-$ distance is contracted. A similar blue shift is found for charge transfer transitions of octahedral or tetracahedral complexes89.

Further work searching to explain the puzzling red shift found in copper layered compounds is now under way.

AUTHOR INFORMATION

Corresponding author

E-mail: aramburj@unican.es

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENTS

The support by the Spanish Ministerio de Ciencia y Tecnología under Projects FIS2012-30996 and FIS2015-64886-C5-2-P is acknowledged.

REFERENCES

43. CRystal basis sets http://www.crystal.unito.it/Basis_Sets/Ptable.html access 6 February 2018.

53. VASP Potentials: https://cms.mpi.univie.ac.at/vasp/vasp/Recommended_PAW_potentials_DFT_calculations_using_vasp_5_2.html access 6 February 2018

84. Kurzydłowski, D; Derzsi M; Mazejc, Z and Grochala W. Crystal, electronic, and magnetic structures of M₂AgF₄ (M = Na–Cs) phases as viewed from the DFT+U method. *Dalton Trans.*, **2016**, *45*, 16255–16261

<table>
<thead>
<tr>
<th>System</th>
<th>Method</th>
<th>Group</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>β</th>
<th>R_S</th>
<th>R_L</th>
<th>R_Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH$_3$NH$_3$)$_2$CuCl$_4$</td>
<td>Experim.</td>
<td>P2$_1$/c</td>
<td>9.814</td>
<td>7.424</td>
<td>7.155</td>
<td>70.8</td>
<td>2.287</td>
<td>2.902</td>
<td>2.312</td>
</tr>
<tr>
<td></td>
<td>VASP</td>
<td>P2$_1$/c</td>
<td>9.861</td>
<td>7.408</td>
<td>7.091</td>
<td>70.6</td>
<td>2.258</td>
<td>2.923</td>
<td>2.301</td>
</tr>
<tr>
<td></td>
<td>CRYSTAL</td>
<td>P2$_1$/c</td>
<td>10.294</td>
<td>7.070</td>
<td>7.130</td>
<td>65.8</td>
<td>2.299</td>
<td>2.747</td>
<td>2.314</td>
</tr>
<tr>
<td></td>
<td>CRYSTAL</td>
<td>P2$_1$/c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>70.8</td>
<td>2.299</td>
<td>2.895</td>
<td>2.303</td>
</tr>
<tr>
<td>(CH$_3$NH$_3$)$_2$CdCl$_4$</td>
<td>Experim.</td>
<td>Cmca</td>
<td>7.384</td>
<td>19.220</td>
<td>7.483</td>
<td>90.0</td>
<td>2.644</td>
<td>2.644</td>
<td>2.537</td>
</tr>
<tr>
<td></td>
<td>CRYSTAL</td>
<td>Cmca</td>
<td>7.502</td>
<td>19.148</td>
<td>7.437</td>
<td>90.0</td>
<td>2.671</td>
<td>2.671</td>
<td>2.591</td>
</tr>
<tr>
<td>K$_2$CuF$_4$</td>
<td>Experim.</td>
<td>Cmca</td>
<td>12.734</td>
<td>5.866</td>
<td>5.866</td>
<td>90.0</td>
<td>2.000</td>
<td>2.223</td>
<td>1.937</td>
</tr>
<tr>
<td></td>
<td>CRYSTAL</td>
<td>Cmca</td>
<td>12.734</td>
<td>5.824</td>
<td>5.824</td>
<td>90.0</td>
<td>2.061</td>
<td>2.061</td>
<td>1.906</td>
</tr>
<tr>
<td></td>
<td>CRYSTAL</td>
<td>I4/mmm</td>
<td>4.118</td>
<td>4.118</td>
<td>12.635</td>
<td>90.0</td>
<td>2.061</td>
<td>2.061</td>
<td>1.906</td>
</tr>
<tr>
<td>Rb$_2$CuCl$_4$</td>
<td>Experim.</td>
<td>Cmca</td>
<td>15.534</td>
<td>7.197</td>
<td>7.187</td>
<td>90.0</td>
<td>2.324</td>
<td>2.716</td>
<td>2.370</td>
</tr>
<tr>
<td></td>
<td>CRYSTAL</td>
<td>Cmca</td>
<td>15.743</td>
<td>7.155</td>
<td>7.156</td>
<td>90.0</td>
<td>2.316</td>
<td>2.744</td>
<td>2.380</td>
</tr>
<tr>
<td></td>
<td>CRYSTAL</td>
<td>I4/mmm</td>
<td>7.135</td>
<td>7.135</td>
<td>15.645</td>
<td>90.0</td>
<td>2.523</td>
<td>2.523</td>
<td>2.342</td>
</tr>
</tbody>
</table>

Table 1. Experimental values of lattice parameters a, b, c, β and Cu$^{2+}$-X$^-$ distances R_S, R_L, R_Z, for (CH$_3$NH$_3$)$_2$CuCl$_4$ (monoclinic P2$_1$/c space group, see Fig. 1) and (CH$_3$NH$_3$)$_2$CdCl$_4$ (orthorhombic Cmca standard group, see Fig. 6) and K$_2$CuF$_4$ (orthorhombic Cmca standard group, see Fig. 2) and Rb$_2$CuCl$_4$ (orthorhombic Cmca standard group, see Fig. 3), compared to those optimized through first principle calculations using either VASP and CRYSTAL codes. Optimized results corresponding to a parent high symmetry tetragonal I4/mmm phase are also given for K$_2$CuF$_4$ and Rb$_2$CuCl$_4$ (note that in Cmca phase a is the long axis, but in I4/mmm is c). The second CRYSTAL results for (CH$_3$NH$_3$)$_2$CuCl$_4$ correspond to a calculation where the lattice parameters were fixed at the experimental values and thus only the three Cu$^{2+}$-Cl$^-$ distances were derived through the minimization procedure. All distances are given in Å and angle β in degrees.

<table>
<thead>
<tr>
<th>Pressure</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>β</th>
<th>R_S</th>
<th>R_L</th>
<th>R_Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.861</td>
<td>7.408</td>
<td>7.091</td>
<td>70.59</td>
<td>2.258</td>
<td>2.923</td>
<td>2.301</td>
</tr>
<tr>
<td>5</td>
<td>9.198</td>
<td>6.720</td>
<td>6.615</td>
<td>71.10</td>
<td>2.213</td>
<td>2.513</td>
<td>2.300</td>
</tr>
<tr>
<td>10</td>
<td>9.120</td>
<td>6.454</td>
<td>6.385</td>
<td>71.45</td>
<td>2.166</td>
<td>2.376</td>
<td>2.306</td>
</tr>
<tr>
<td>15</td>
<td>8.979</td>
<td>6.265</td>
<td>6.239</td>
<td>71.59</td>
<td>2.130</td>
<td>2.294</td>
<td>2.303</td>
</tr>
<tr>
<td>20</td>
<td>8.937</td>
<td>6.124</td>
<td>6.111</td>
<td>71.18</td>
<td>2.096</td>
<td>2.230</td>
<td>2.313</td>
</tr>
</tbody>
</table>

Table 2. Optimized values of the lattice parameters and Cu$^{2+}$-Cl$^-$ distances obtained with the VASP code for (CH$_3$NH$_3$)$_2$CuCl$_4$ under a hydrostatic pressure. All distances are given in Å and angle β in degrees. The pressure unit is GPa.
<table>
<thead>
<tr>
<th>Compound</th>
<th>RS</th>
<th>RL</th>
<th>RZ</th>
<th>g2</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(HOCH₂CH₂NH₃)₂CuCl₄</td>
<td>2.288</td>
<td>3.010</td>
<td>2.274</td>
<td>2.04</td>
<td>73</td>
</tr>
<tr>
<td>(CH₃NH₃)₂CuCl₄</td>
<td>2.283</td>
<td>2.907</td>
<td>2.297</td>
<td>2.05</td>
<td>17,74,41</td>
</tr>
<tr>
<td></td>
<td>2.287</td>
<td>2.902</td>
<td>2.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C₂H₅NH₃)₂CuCl₄</td>
<td>2.285</td>
<td>2.975</td>
<td>2.277</td>
<td>2.05</td>
<td>18,75</td>
</tr>
<tr>
<td>(C₃H₇NH₃)₂CuCl₄</td>
<td>2.29</td>
<td>3.04</td>
<td>2.29</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>(CH₃NH₃)₂CdCl₄:Cu²⁺</td>
<td>2.441</td>
<td>2.690</td>
<td>2.279</td>
<td>2.05</td>
<td>40,41</td>
</tr>
</tbody>
</table>

Table 3. Values of the two in plane distances, RS and RL, and the out-of-plane distance, RZ, (in Å) measured for some layered Cu²⁺ compounds at room temperature. In the case of (CH₃NH₃)₂CuCl₄ the RS, RL and RZ distances determined at T = 100 K are shown in italics. For comparison, the distances calculated for (CH₃NH₃)₂CdCl₄:Cu²⁺ in the present work are included together with the available experimental gZ values for the considered systems.

<table>
<thead>
<tr>
<th>Local Symmetry</th>
<th>RS</th>
<th>RL</th>
<th>RZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₄h</td>
<td>2.560</td>
<td>2.560</td>
<td>2.257</td>
</tr>
<tr>
<td>D₂h</td>
<td>2.441</td>
<td>2.690</td>
<td>2.279</td>
</tr>
<tr>
<td>D₂h</td>
<td>2.419</td>
<td>2.705</td>
<td>2.261</td>
</tr>
</tbody>
</table>

Table 4. Values of equilibrium Cu²⁺-Cl⁻ distances RX, RY, RZ derived by means of CRYSTAL code for (CH₃NH₃)₂CdCl₄:Cu²⁺ by means of a supercell involving 84 ions. In a first step the calculations have been carried out forcing a local tetragonal symmetry (RS = RL) around Cu²⁺ such as it is found for the host cation Cd²⁺. In a second step the two in-plane distances, RS and RL, and the out of plane distance, RZ have been taken as free parameters when minimizing the total energy. Note that under D₂h local symmetry there are two equivalent solutions as the long in-plane distance, RL, can be along either X' or Y' directions in Fig. 6. Results obtained through the VASP code for the D₂h equilibrium geometry are also yielded in italics for comparison. All distances are given in Å.
Figure 1. Layered perovskite structure of the hybrid organic-inorganic (CH$_3$NH$_3$)$_2$CuCl$_4$ material with monoclinic standar $P2_1/c$ space group. (X, Y, Z) denote the local axes of a CuCl$_6^{4-}$ complex, with X the direction of the short in-plane Cu-Cl distance, R$_S$, while L is a direction perpendicular to the inorganic Cu-Cl layers.
Figure 2. Left: Layered perovskite structure of the inorganic K_2CuF_4 material with orthorhombic standard Cmca space group. {X, Y, Z} denote the local axes of a CuF$_6^{4-}$ complex, with X the direction of the short in-plane Cu-F distance, R_S. Right: Potential energy $(-e)V_R(r)$ corresponding to the internal electric field created by the rest of lattice ions on a CuF$_6^{4-}$ complex depicted along the X, Y, and Z directions.
Figure 3. Left: Layered perovskite structure of the inorganic Rb$_2$CuCl$_4$ material with orthorhombic standard Cmca space group. {X, Y, Z} denote the local axes of a CuCl$_6^{4-}$ complex, with X the direction of the short in-plane Cu-Cl distance, R_S. Right: Potential energy ($-e$)$V_R(r)$ corresponding to the internal electric field created by the rest of lattice ions on a CuCl$_6^{4-}$ complex depicted along the X, Y, and Z directions.
Figure 4. Variation with the pressure of the three copper-ligand distances in $(\text{CH}_3\text{NH}_3)_2\text{CuCl}_4$ compound obtained from ab initio calculations.
Figure 5. Variation with the pressure of the three copper-ligand distances in K_2CuF_4 and Rb_2CuCl_4 compounds obtained from ab initio calculations.
Figure 6. Left: Layered perovskite structure of the hybrid organic-inorganic (CH\textsubscript{3}NH\textsubscript{3})\textsubscript{2}CdCl\textsubscript{4} material with orthorhombic standar Cmca space group. \{X', Y', Z'\} denote the local axes of a tetragonal CdCl\textsubscript{6}4- complex. Right: Potential energy (−e)V\textsubscript{R}(r) corresponding to the internal electric field created by the rest of lattice ions on a CdCl\textsubscript{6}4- complex depicted along the X', Y', and Z' directions.
Figure 7. Experimental temperature dependence of the g-values of Cu$^{2+}$-doped $(\text{CH}_3\text{NH}_3)_2\text{CdCl}_4$. Adapted from Ref. 38.
Figure 8. Simple scheme outlining the differences between the B_{1g} non-symmetric mode in K_2CuF_4 pure compound and in Cu$^{2+}$-doped K_2ZnF_4. Note that for K_2CuF_4 the motion of a ligand implies the activation of springs corresponding to two neighbors Cu$^{2+}$ complexes. In the case of K_2ZnF_4:Cu$^{2+}$ that motion involves the Cu$^{2+}$ complex and also that of a neighbor Zn$^{2+}$ complex.
Table of Contents Graphic

\[
\text{CuCl}_6^{4-} \sim 3z^2-r^2 \text{ state } \text{elongated along } Y
\]

\[
\text{CuCl}_6^{4-} \sim 3z^2-r^2 \text{ state } \text{elongated along } Z
\]

\[
\text{P = 20 GPa}
\]

\[
\text{P = 0}
\]

\[
\begin{align*}
\text{(CH}_3\text{NH}_3\text{)}_2\text{CuCl}_4 \\
\text{Cu-Cl distance (Å)} \\
\text{Pressure (GPa)}
\end{align*}
\]