Complete Genome Sequence of Shewanella sp. WE21, a Rare Isolate with Multiple Novel Large Genomic Islands

Castillo, Daniel; Gram, Lone; Dailey, Frank E.

Published in:
Genome Announcements

Link to article, DOI:
10.1128/genomeA.00277-18

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Castillo, D., Gram, L., & Dailey, F. E. (2018). Complete Genome Sequence of Shewanella sp. WE21, a Rare Isolate with Multiple Novel Large Genomic Islands. Genome Announcements, 6(16), [e00277-18]. https://doi.org/10.1128/genomeA.00277-18

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Complete Genome Sequence of *Shewanella* sp. WE21, a Rare Isolate with Multiple Novel Large Genomic Islands

Daniel Castillo,a Lone Gram,b Frank E. Daileyc

aMarine Biological Section, University of Copenhagen, Helsingør, Denmark
bDepartment of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
cDepartment of Biology, University of Wisconsin–Sheboygan, Sheboygan, Wisconsin, USA

**ABSTRACT** We present here the whole-genome sequence of *Shewanella* sp. WE21, an unusual omega-3 fatty acid-producing bacterium isolated from the gastrointestinal tract of the freshwater fish *Sander vitreus* (walleye). This genome contains a number of unique, large genomic islands with genes not present in other *Shewanella* bacteria.

*Shewanella* spp. are Gram-negative, motile bacilli that are found in many environments but most often in aquatic environments, particularly in marine ones. They are important for the turnover of organic material, and they are capable of dissimilatory reduction of various metals and other substances. (1). Also, several *Shewanella* strains have been reported as candidates for biotechnological applications such as omega-3 fatty acid production (2) and bioremediation of heavy metals (1). In contrast to their beneficial roles, *Shewanella* strains have been identified as major agents of fish spoilage (3) and recently as fish pathogens responsible for outbreaks of disease (4). Furthermore, they are increasingly being implicated as opportunistic human pathogens (5). *Shewanella* sp. WE21, isolated from the gastrointestinal tract of the freshwater fish species *Sander vitreus* (walleye) in Lac des Mille, Ontario, Canada (48°84′N, 90°51′W) (6), represents a novel omega-3 fatty acid-producing freshwater isolate of *Shewanella*. It appears most closely related to *S. putrefaciens* strains by phylogenetic analysis (6). However, *in silico* DNA-DNA hybridization suggests that *Shewanella* sp. WE21 is more closely related to (but distinct from) *S. baltica* species (F. Dailey, unpublished results). Here, we report the whole-genome sequence of this strain.

PacBio sequencing with 100× coverage was performed as previously described (6) for *Shewanella* sp. strain WE21. Annotation was performed by using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (7). Additionally, the genomes were analyzed on the Rapid Annotations using Subsystems Technology (RAST) server (8). Acquired antibiotic resistance genes were identified by using ResFinder version 2.1 (9), virulence factors by using VirulenceFinder version 1.2 (10), clustered regularly interspaced short palindromic repeat (CRISPR) arrays by using CRISPRFinder (11), genomic islands by using IslandViewer version 4 (12), and prophage-related sequences by using PHASTER (13).

The final assembly for *Shewanella* sp. strain WE21 resulted in one large closed contig with a total length of 5,266,746 bp and a G+C content of 45.3%. Genome annotation resulted in 4,416 coding sequences (CDSs) plus one potential overlapping CDS, 105 tRNAs, 176 pseudogenes, and 31 rRNAs; 96.2% of the CDSs were classified as hypothetical proteins. Five prophage-like elements between 33.7 to 43.4 kb in length were detected. No virulence factors were identified in these prophage sequences. In addition, four genomic islands of 131.4kb, 106.5kb, 28.7kb, and 9.2kb, which have GC% contents of 40.6, 42.3, 38.3, and 57.9, respectively, were identified. In the first genomic island, we detected genes encoding putative virulence factors found in *Vibrio anguil-
nor (14) and other fish pathogens, as well as a type III secretion system with large overlapping genes. Analysis of the second reveals not only additional genes encoding vibrio-like virulence factors, such as _cnf2_, but also genes encoding insecticidal toxins (15) and polyketides. The third genomic island putatively encodes very novel pili, and the fourth encodes copper efflux genes. Antibiotic resistance genes penicillin (BL) and fluoroquinolones (parC, parE, gyrA, and gyrB) were detected. Also, cobalt-zinc-cadmium resistance genes (CzcD, CzcA, CusA, CusB, and TR) and arsenic resistance genes were identified. No CRISPR arrays or plasmids were detected. This genome sequence can facilitate the understanding of symbiosis and virulence in fish intestinal bacteria.

**ACKNOWLEDGMENTS**

We acknowledge the Institute of Genome Sciences (IGS), University of Maryland, for performing the genomic sequencing. We thank the Leibniz Institute DSMZ for the use of the Genome-to-Genome Distance Calculator version 2.1 for the in silico analyses and Michael Thomas (Bacteriology, University of Wisconsin) for the initial analysis of the polyketide-encoding genes.

We also acknowledge the support of the Department of Biology, University of Wisconsin Colleges (F. E. Dailey), as well as previous support from Concordia University, Wisconsin, for the genome sequencing. This work was also supported by grant 12-132390 (ProAqua project) from the Innovation Fund Denmark (L. Gram and D. Castillo).

**REFERENCES**