Near-shore wind resource estimation using lidar measurements and modelling

Floors, Rogier Ralph; Hahmann, Andrea N.; Pena Diaz, Alfredo

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Near-shore wind resource estimation using lidar measurements and modelling
Rogier Floors, Andrea N. Hahmann and Alfredo Peña
DTU Wind Energy

Abstract
The atmospheric flow in the coastal zone is investigated using (scanning) lidars, mast measurements and the mesoscale WRF model. The WRF model is set-up in 12 different configurations using 2 planetary boundary-layer schemes, 3 horizontal grid spacings and varied sources of land use, and initial and lower boundary conditions.

Objectives
- Describe the impact of boundary layer scheme, resolution, land use data and atmospheric forcing on the WRF modelled wind speed
- Estimate the wind resource using scanning and vertically profiling lidars

Methods

Vertical profiles

The horizontal gradient in mean winds speed across the experimental site from 5 km offshore up to 2 km inland is shown above. Data were filtered based on the CNR ratio (measurement quality) and availability in the whole transect, leaving 731 transects at 50, 100 and 150 m. The model output from all simulations was extracted during the same 10-min intervals.

Generally the model prediction show slightly higher wind speeds offshore. Over land at 50 m the observed wind speed is much lower than the modelled wind. The WRF model cannot capture the effect of the cliff well, partly due to its coarser resolution.

Both scanning lidar systems agree well far offshore. The vertical profiling lidars show a lower mean wind speed.

Conclusions
The WRF modelled wind speed was close to scanning lidar observations in a transect across the coastline, although all simulations showed wind speeds that were slightly higher than observed. Inland at 50 m, the model did not capture the strong decrease in mean wind speed resulting from the surface roughness change when moving eastward from the coastline. Using ERA-interim data as boundary conditions improved the model skill scores. Using a finer horizontal grid spacing deteriorated the model performance. Modelled and observed spectra were compared and showed that the horizontal grid spacing had a large impact on the ability of the different setups to capture high frequency atmospheric motions. Combining the WRF model with lidar measurements can be useful to describe and understand the flow in the coastal zone.

References

The authors declare that they have no conflict of interest.

This work is financially supported by the Danish Ministry for Science and Innovation through the grants N/A-17-002840 and N/A-17-002836.

PO.026

Download the poster

offshorewind2017.com

#offshore2017