Influence of Promotor, H2O and H2S on the Hydrodeoxygenation of Biomass Pyrolysis Vapor over MoS2 Catalysts

Arndal, Trine M. H.; Høj, Martin; Gaur, Abhijeet; Prüssmann, Tim; Pintos, Delfina Garcia; Studt, Felix; Gabrielsen, Jostein; Grunwaldt, Jan-Dierk; Jensen, Anker Degn

Publication date: 2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Influence of Promotor, H₂O and H₂S on the Hydrodeoxygenation of Biomass Pyrolysis Vapor over MoS₂ Catalysts

Trine M. H. Arndal¹, Martin Høj¹, Abhijeet Gaur², Tim Priusmann², Delfina G. Pintos³, Felix Studt³, Jostein Gabrielsen⁴, Jan-Dierk Grunwaldt⁵ and Anker D. Jensen⁶.

¹Technical University of Denmark (DTU), Kgs. Lyngby, DK-2800 (Denmark)
²Karlsruhe Institute of Technology (KIT), Karlsruhe, D-76131 (Germany)
³Stanford University, Stanford, CA-94305 (USA)
⁴Haldor Topsøe A/S, Kgs. Lyngby, DK-2800 (Denmark)
⁵*aj@kt.dtu.dk

Introduction

Catalytic hydropyrolysis combines fast pyrolysis with catalytic upgrading by hydrodeoxygenation (HDO) in a single step for the production of fuel oil from biomass in which reactive pyrolysis vapors are upgraded before condensation. Catalyst activity and lifetime is challenged by carbon deposition and by the presence of alkali, nitrogen, sulfur and water. In this contribution, a combined experimental, characterization (in-situ Quick-EXAFS) and theoretical (DFT) study of catalytic HDO of biomass pyrolysis model compounds over MoS₂ based catalysts is presented with emphasis on the influence of water and H₂S.

Materials and Methods

MoS₂/MgAl₂O₄ and Co/Ni-MoS₂/MgAl₂O₄ catalysts with 3.3 wt% Mo and Co/Ni:Mo molar ratio = 0.3 have been prepared by incipient wetness impregnation and sulfidation with 10-12% H₂S/H₂ at 360-400°C. Ethylene glycol (EG) is a simple model polyol representing the cellulose fraction of biomass. Catalytic HDO tests were conducted in a fixed bed reactor at 350-450°C, 28 bar H₂ and 545-2200 ppm H₂S (mₒ = 0.5-4 g, feed rate = 0.14 mL/min, EG WHSV = 2.3-19 h⁻¹, 40 barg, balance N₂). Products were separated into gas (online analysis by GC/TCD) and liquid (offline analysis by GC-MS/FID). DFT calculations were used to predict the influence of varying H₂O/H₂S ratios on the stability of the sulfide/oxide phases and reaction pathways. The Quantum Espresso code was applied in combination with the BeeF-vdW exchange correlation functional. In-situ Quick-EXAFS was conducted during sulfdation and subsequent exposure to varying H₂O/H₂S ratios at 400-450°C. Catalysts and support material have been also analyzed using other techniques such as ICP-OES, NH₃-TPD, XRD, BET and Raman spectroscopy.

Results and Discussion

Co/Ni-MoS₂/MgAl₂O₄ catalysts were active and moderately selective for EG HDO. 100% conversion was obtained for 50 h on stream at 400°C 545 ppm H₂S and EG WHSV = 2.3 h⁻¹. At these conditions, a moderate HDO product yield (ethane and ethylene) of 40-45% was observed together with an undesired cracking (C₂/C₁, CO, CO₂, CH₄) yield of 30-35%. Catalyst deactivation is believed to be caused by carbon deposition (3.5-9.5 wt% on spent catalysts) and exchange of S by O at the active MoS₂ edges. S-O exchanges may be mitigated with a higher H₂S concentration. In fact, a higher H₂S concentration reactivated and stabilized the catalyst and improved the HDO/cracking selectivity in experiments with EG WHSV = 19 h⁻¹, see Figure 1 (A+B). DFT has however indicated that a too high concentration of H₂S inhibits S-vacancy formation at the Mo₃S₄ edge thereby potentially limiting HDO. In-situ Quick-EXAFS has thus been applied to study the effect of varying H₂O/H₂S ratios on catalyst composition. The magnitude of the Fourier Transformed in-situ EXAFS spectra (Figure 1C) shows the transition from oxide (MoO₃) to sulfide (MoS₂) during catalyst sulfidation. The EXAFS fit for the resulting sulfide phase shows contributions from Mo-O (2.4 ± 0.3) and Mo-Mo (3.15 ± 0.3) with CN = 0.37 ± 0.07. The presence of a small Mo-O contribution (Mo-O (1.61 ± 0.3) with CN = 0.24 ± 0.07) indicates incomplete sulfidation which is possibly caused by interaction of highly dispersed MoS₂ crystallites with the support.

![Figure 1](image-url)

DFT calculations have shown that promotion with Ni compared to Co results in a higher hydrogen availability, which is reflected in the higher yield of ethane compared to ethylene observed for Ni-MoS₂/MgAl₂O₄ (Figure 1A). DFT calculations for EG HDO reaction pathways are being conducted.

Significance

To our knowledge, this is the first catalytic HDO study which combines the experimental and theoretical investigation with advanced in-situ XAS characterization to unravel the influence of promotion and H₂O/H₂S on catalytic HDO over MoS₂ catalysts. Understanding the mechanisms behind this key step in optimizing the catalytic hydropyrolysis process.

References