Photo Contest 2017

Markos, Christos

Published in:
Optics & Photonics News

Link to article, DOI:
10.1364/OPN.28.12.000022

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Congratulations to the winners of OPN’s 12th annual After Image photo contest.

For this year’s contest, OPN received 57 intriguing entries. We thank the panel of judges who provided insight on those images and helped select the winners: Svetlana Boriskina, Massachusetts Institute of Technology, USA; Mihaela Dinu, LGS Innovations, USA; Alexandre Fong, Gooch & Housego, USA; Bob D. Guenther, Duke University, USA; Brooke Hester, Appalachian State University, USA; Vasudevan Lakshminarayanan, University of Waterloo, Canada; and Arlene Smith, Avo Photonics Inc., USA.

You can see all of this year’s contest entries online at www.osa-opn.org/contest/2017.

FIRST PLACE
“This is a live image of the diatom *Arachnoidiscus*. The picture shows the diatom’s silicified cell wall, which forms a pillbox-like shell composed of overlapping halves that contain intricate and delicate markings. The picture was taken with a polychromatic polscope. Using that instrument, an eye or camera can directly see the colored polarization image through the ocular, with brightness corresponding to retardance and color corresponding to the slow-axis azimuth.”

——Michael Shribak, Marine Biological Laboratory
Photo Contest 2017
SECOND PLACE

“This image [left] shows a number of optical phenomena, starting with a green laser (532-nm Nd:YAG) guided by a multimode silica optical fiber to a vial containing an organic dye (Rhodamine 6G) that absorbs the green laser light and emits red light. The blue shade across part of the picture is from the spectrometer computer that analyses the dye emission. Captured at the Chemical Sensing Lab, Institute for Photonics and Advanced Sensing, University of Adelaide, Australia.”

—Georgios Tsiminis, University of Adelaide

THIRD PLACE

“This photograph [above] illustrates the combination of linear and nonlinear wave propagation in optics. Broadband coherent supercontinuum light generated from nonlinear interactions in an optical fiber undergoes scattering and multiple refraction, manifested by caustics, when propagating through colorless water beads.”

—Goëry Genty, Tampere University of Technology

Visit www.osa-opn.org/contest/2017 for a look at all the submissions to this year’s After Image photo contest.
HONORABLE MENTION

“A multiplexing stream: The beams from three laser pointers of different wavelengths pass through a tank of water, and exit into a single water stream. Once in the stream, the beams can be seen reflecting at the water-air interface, as a result of total internal reflection, and following the curved path of the water stream.”

— Aongus McCarthy, Heriot-Watt University

HONORABLE MENTION

“Water droplets on a flower adopt almost hemispherical shapes. The resulting lenses greatly magnify the underlying petal surface. Direct sun shines as a diffraction star.”

— Emilio Gómez-González, Universidad de Sevilla, Spain
HONORABLE MENTION

“Top view of a soft-glass fiber preform while it is inside the furnace of a brand new 6-meter fiber fabrication draw tower facility [at DTU Fotonik] at around 1000 degrees Celsius.”

—Christos Markos,
DTU Fotonik, Technical University of Denmark

HONORABLE MENTION

“Beetles from all over the world regard themselves in the mirror and find that they are all left-handed circularly polarized. Shot with a Canon EOS 450D through a circular polarizer for photography oriented the wrong way around.”

—Frans Snik,
Universiteit Leiden

Visit www.osa-opn.org/contest/2017 for a look at all the submissions to this year’s After Image photo contest.