Microbiota analysis to reveal temperature abuse of fresh pork

Buschhardt, Tasja; Bahl, Martin Iain; Hansen, Tina Beck; Brejnrod, Asker Daniel; Abu Al-Soud, Waleed; Mortensen, Martin Steen; Sørensen, Søren Johannes; Aabo, Søren

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Buschhardt, T., Bahl, M. I., Hansen, T. B., Brejnrod, A. D., Abu Al-Soud, W., Mortensen, M. S., ... Aabo, S. (2017). Microbiota analysis to reveal temperature abuse of fresh pork. Abstract from The Annual Congress of The Danish Microbiological Society (DMS), Copenhagen, Denmark.
Microbiota analysis to reveal temperature abuse of fresh pork

Tasja Buschhardt*a, Martin Iain Bahla, Tina Beck Hansena, Asker Daniel Brejnrodb, Waleed Abu Al-Soudb, Martin Steen Mortensenb, Søren Johannes Sørensenb, and Søren Aaboa

aTechnical University of Denmark – National Food Institute, Kemitorvet Building 204, DK2800 Kgs. Lyngby, Denmark, bUniversity of Copenhagen – Department of Biology, Section of Microbiology, Universitetsparken 15, DK-2100 København Ø

Violations of temperature regulations in the meat chain may affect meat safety. Methods are lacking to estimate whether meat has been subjected to temperature abuse. Exposure to too high temperatures may lead to systematic changes in the diverse bacterial communities of fresh meat. We investigated whether temperature induced changes in the community composition on fresh meat surfaces can reflect the temperature-history (combination of time and temperature). Sterile pieces of pork were inoculated with a carcass swab homogenate, to which Salmonella was added. Changes in the meat microbiota were monitored during aerobic chill-storage (4 °C and 7 °C) and temperature abuse (12 °C and 16 °C) for 96 hours, by culture-based methods and 16S rRNA gene sequencing. Bacterial genera that dominated during prolonged temperature abuse were Acinetobacter, Serratia and Pseudomonas, whereas chill-stored meat was dominated by Pseudomonas only. We also showed that the initial community affects subsequent changes during storage. The results suggest that principal coordinate analysis of beta diversity could be a useful tool to reveal temperature abused meat. Sequence data and culturing data revealed a strong positive association between growth of Escherichia coli and growth of Salmonella, which suggests that Escherichia coli can be used as indicator of temperature-history supporting growth of Salmonella on fresh pork surfaces.