Interaction between \(-\)lactoglobulin and structurally different heteroexopolysaccharides investigated by solution scattering and analytical ultracentrifugation study

Khan, Sanaullah; Birch, Johnny; Harris, Pernille; Van Calsteren, Marie-Rose; Ipsen, Richard; Peters, Günther H.J.; Svensson, Birte; Almdal, Kristoffer

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Interaction between β-lactoglobulin and structurally different heteroexopolysaccharides investigated by solution scattering and analytical ultracentrifugation study
Sanaullah Khan12*, Johnny Birch1, Pernille Harris3, Marie-Rose Van Calsteren4, Richard Ipsen5, Günther H.J. Peters3, Birte Svensson1 and Kristoffer Almdal2,

1 Enzyme and Protein Chemistry, Department of Biotechnology and Bioengineering, DTU, Elektrovej, Building 375, DK-2800 Kgs. Lyngby, Denmark.

2 Department of Micro- and Nanotechnology, DTU, Ørsted Plads, Building 423, DK-2800 Kgs. Lyngby, Denmark.

3 Department of Chemistry, DTU, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark.

4 Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada.

5 Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark.

*e-mail: sank@dtu.dk

Knowledge on molecular structure of exopolysaccharides (EPSs) and their roles in the associative interactions with proteins is essential to understand the relationship between their structure, physical and rheological properties. Despite their importance, no detailed molecular characterization of bacterial EPSs and their associative interactions with proteins have been reported up to now. By combining X-ray solution scattering (SAXS), dynamic light scattering (DLS) and analytical ultracentrifugation (AUC) in conjunction with scattering modeling, we have characterized four different heteroexopolysaccharides (HePS-1–HePS-4) from lactic acid bacteria (LAB) and their interactions with β-lactoglobulin. We have previously shown that these HePSs exhibited a compact conformation in solution [1]. Here, SAXS data for HePSs (HePS-1–HePS-4) complexes with β-lactoglobulin showed that β-lactoglobulin aggregated strongly with these HePSs. β-lactoglobulin exists as a dimer at pH 4 in the absence of HePSs. When mixed with HePSs, SAXS analysis showed that β-lactoglobulin formed large aggregates. DLS also showed formation of large aggregates of β-lactoglobulin with HePSs, thus validating SAXS data. Turbidity and AUC data indicated that both soluble and insoluble BLG–HePSs complexes were formed. This study provides new insights into the role of molecular structures in associative interactions between HePSs and BLG which has relevance for various industrial applications.

The Danish Council for Independent Research | Technical and Production Sciences is acknowledged for financial support of the project.

References