Residential fire solutions in the building sector

Shaukat, Fatima Shezadi; Markert, Frank

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

· Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
· You may not further distribute the material or use it for any profit-making activity or commercial gain
· You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Residential fire solutions in the building sector

Fatima Shezadi Shaukat
Danish Technical University
Department of Civil Engineering
Section for Building Design
Fire Safety Group
Denmark, Copenhagen
fash@student.dtu.dk

Frank Markert
Danish Technical University
Department of Civil Engineering
Section for Building Design
Fire Safety Group
Denmark, Copenhagen
fram@byg.dtu.dk

Keywords: Fire retardents, biomaterials, residential fires

Residential fires are still frequently occurring in the world, which have the potential growing into disaster that can cause many casualties. As stated in literature and policy papers, biomaterials are needed to obtain more sustainable solutions in the building sector. All building materials need to sustain a series of fire testing, and the application of coatings might be needed before the materials are acceptable to use. This is in order to establish a high safety level with concern to fire, especially in the case of biomaterials, as they have to be considered combustible.

Hence, the application of flame-retardants is a common solution, but many flame-retardants have adverse effects to human health and the environment. Therefore, the fire behaviour of the materials in combination with flame-retardants need to be studied. An example are boron compounds, which are widely used as flame-retardants to reduce the ignitibility of biomaterials, despite the fact that a number of these compounds are on the ECHA list of candidates of very high concern for authorization.

It is a well-established fact that borates tend to wash out, and may impact the surrounding environment. Therefore, its application may become questioned in the future.

Hence, in the current work, sustainable solutions using biomaterials in construction with a focus on fire safety are examined.

As part of a starting PhD project, different methods for production and fire testing of bio-based materials and composites are reviewed including wooden products (e.g. board, fibre, LVL (Laminated Veneer Lumber)). Hereunder, the fire properties of bio-based resins as lignin and furfuryl-alcohol are investigated. The study provides basic information on the material’s potential to give better products, i.a. to use less flame-retardants giving less adverse environmental effects.