Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold

Frydendahl, Christian; Repän, Taavi; Geisler, Mathias; Novikov, Sergey M.; Beermann, Jonas; Lavrinenko, Andrei; Xiao, Sanshui; Bozhevolnyi, Sergey I.; Mortensen, N. Asger; Stenger, Nicolas

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Continuous gold films close to the percolation threshold

Optical reconfiguration and polarization control in semi-continuous gold films fabricated by simple metal evaporation techniques can be locally aligned by fs-pulsed laser illumination. This laser illumination creates elongated resonant particles that are aligned with the polarization of the laser used.

The resonance of these particles can be controlled by using different financial film thickness, laser power, and laser wavelength.

By this illumination it is possible to perform 'grayscale' plasmonic image printing using the films as writing medium.

Locally tuning the resonance properties of the films could also open up new imaging applications for pretextual metal films.

1. Introduction

In this work we have studied the intrinsic and reconfigurable optical properties of semi-continuous gold films, fabricated via a simple metal evaporation technique. We have prepared three films of nominal thicknesses 5, 6, and 7nm.

After fabrication the films are illuminated in areas by scanning a fs-pulsed laser over the films. This results in permanent morphological changes in the films observed in a scanning transmission electron microscopy (STEM), see Fig. 2. The laser writing also introduces a polarized feature in the transmission spectra of the films.

We have performed electron energy-loss spectroscopy (EELS) measurements and extensive finite-element simulations of our sample morphologies to better understand the origin of this polarization effect as well as the distribution of plasmonic resonances with and without laser writing.

2. Optical spectroscopy

After illuminating the gold films with different laser powers we performed long-field transmission spectroscopy on the different regions, see Fig. 3.

During the transmission experiment it is possible for us to position the light source illuminating this area of the film can align it either parallel or perpendicular to the polarization of the laser used. The samples are usually used to reconfigure the gold film.

From this we see that a strong dip in transmission appears when aligning the light source parallel to the writing laser. We also see that the wavelength position of this dip depends on the power and wavelength of laser light used.

3. Hyperspectral images

To elucidate the origin of the polarization effect observed in Fig. 3, we have recorded hyperspectral images of our different sample morphologies using EELS, see Fig. 5.

Because of the fractal and self-similar nature of the films, a statistical representation of the image data is more succinct and easily comparable between samples. By a sequential filtering routine we can identify the different plasmonic peaks found in the samples. We then sort them by central energy and peak EELS-intensity in histograms and probability density functions (PDFs), see Fig. 6.

4. Toy model description

To understand how the individual clusters and gaps of gold in the film morphologies are altered by the photothermal process of the laser illumination, we can construct a simple toy model of elongated resonant particles. We can imagine three processes for their photothermal melting:

- **Particle shortening/polarization:**
 - Gap opening.
 - Gap closing/particle welding.

To understand how these three processes influence the resonance of the particles, we have performed a set of different finite element simulations where the aspect ratios of the particles are altered, but their volumes are conserved.

This stimulates the melting and reshaping processes of the metal particles if we assume minimal metal evaporation.

5. Polarization dependence

To visualize the particles responsible for the polarization response observed in the transmission experiment (Fig. 3), we plot the integrated EELS data from the 1.0-2.0eV range in which we see the transmission dip for the different 5nm samples.

From these maps we see several elongated particles that show EELS intensity distributions consistent with a longitudinal dipole mode predominantly aligned along the polarization used in the laser reconfiguration.

6. Simulation geometry

Because EELS does not provide us with a polarized excitation source, we perform simulations to recover the polarization dependence of the plasmonic excitations.

To simulate our structures we utilize the already available microstructural images from our samples. We then use the average particle thickness within its outline to map the particles as straight prisms with varying heights in the simulation geometry, see Fig. 6.

7. Simulation results

We perform simulations of plane wave excitations on our constructed geometry. This allows us to choose the perpendicular or parallel polarizations, aligned with the polarization used initially in the laser writing. We can then map the components of the excited fields from either of these excitations, or their sum.

For the two cases in Fig. 10 we get good agreement between the summed theoretical fields and the EELS data. When comparing the individual field components, we see that the particles aligned with the experimental polarization we also strongly polarized in the same.

As their polarization and resonance energy fit the features observed in the optical experiment (Fig. 3), we suggest that the polarization response of the gold film after illumination comes from these resonant particles formed by the photothermal processes.

8. Conclusions

- **Continuous gold films fabricated by simple metal evaporation techniques can be locally aligned by fs-pulsed laser illumination.**
- **This laser illumination creates elongated resonant particles that are aligned with the polarization of the laser used.**
- **The resonance of these particles can be controlled by using different financial film thickness, laser power, and laser wavelength.**
- **By this illumination it is possible to perform ‘grayscale’ plasmonic image printing using the films as writing medium.**
- **Locally tuning the resonance properties of the films could also open up new imaging applications for pretextual metal films.**

References

- Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kongens Lyngby, Denmark.
- Center for Nanostructured Graphene, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kongens Lyngby, Denmark.
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

Work funded by:

- Technical University of Denmark
- Department of Photonics Engineering
- Øorsteds Plads 343
- DK-2800 Kongens Lyngby
- Denmark.