Global Wind Atlas – validation and uncertainty

Mortensen, Niels Gylling; Davis, Neil; Badger, Jake; Hahmann, Andrea N.

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Global Wind Atlas – validation and uncertainty

Niels G Mortensen, Neil Davis, Jake Badger, Andrea N Hahmann

WindEurope Resource Assessment 2017
Global Wind Atlas

The objective of the Global Wind Atlas is to

- Provide global wind resource data sets
- Account for high resolution topography
- Employ microscale modelling world-wide
- Use a unified and documented methodology
- Ensure transparency about the methodology
- Validate results in representative areas

(globalwindatlas.com)

The correct usage of the Global Wind Atlas is

- Aggregation
- Upscaling analysis
- Energy integration modelling
 - energy planners and policy makers

It is not correct to use the data and tools for

- wind turbine and wind farm yield calculations

Topics for this presentation

- Validation of GWA at high-quality mast sites
- Highlight proper use of numerical wind atlases
Global Wind Atlas characteristics

- Climatological data
 - MERRA reanalysis 1979-2013
 - Horizontal resolution, $\Delta = 0.5 \times 0.625$ deg.
 - GWC interpolation to every prediction site

- Topographical data
 - Viewfinder Panoramas (SRTM), $\Delta = 150$ m
 - GlobCover 2009 land cover, $\Delta = 300$ m
 - DTU translation table from LC to z_0

- Methodology
 - WAsP modelling (Frogfoot), $\Delta = 250$ m
 - Results aggregated to $\Delta = 1$ km
 - Heights above ground 50, 100, 200 m

- For the present validation
 - Generalised wind climates at MERRA nodes
Global Wind Atlas validation

• Climatological data @ ~90 sites
 – Meteorological masts (25-125 m, 1-13 y)
 – Winddata.com, CREYAP, DTU & partners, ...

• Topographical data
 – SRTM-based elevation vector maps
 – Google Earth-based land cover maps

• Methodology
 – Observed statistics at mast height
 – Predicted statistics at mast height from GWA generalised wind climate + WAsP

• Results (at mast or hub height)
 – Mean wind speed and power density
 – Mean wind turbine and wind farm yields
 – Wind direction distributions
Masts used for validation

Projects and analyses
- DTU Course 46200 (2016, 2017)
- EWEA CREYAP 1-4
- Wind Atlas for South Africa
- Mesoscale and microscale modelling in China
- Cape Verde Wind Farm Extension Project
- Danish Wind Atlas
- Wind Atlas for Egypt

Results for four types of sites
- Non-complex, offshore, complex terrain (RIX > 5%), complex flow (mesoscale)

Countries (projects)
- Cape Verde (4)
- China (12)
- Denmark (12)
- Egypt (23)
- Faroe Islands (1)
- France (2)
- Mexico (4)
- South Africa (17)
- United Kingdom (13)
GWA wind speeds and energy yields (simple + offshore)
Onshore and offshore wind speeds

![Wind speed comparison graphs]
Onshore and offshore energy yields

Wind turbine yield from OWA [GWhy⁻¹] vs. Wind turbine yield from GWA [GWhy⁻¹]

- CREYAP 1-4
- WASA Phase 1
- CMA Dongbei
- Cape Verde
- Danish Wind Atlas
- Wind Atlas for Egypt
- On land
- Offshore
Complex terrain (RIX > 5%) – wind speed and energy yield
Complex flows (mesoscale) – wind speed and energy yield

Wind speed from GWA [ms⁻¹]

Wind turbine yield from GWA [GWhy⁻¹]
Comparison of wind direction distributions (WASA 1)

1. Obs
2. GWA

WindEurope Resource Assessment
Effect of length of measured time-series
Comparison of **GWA** and WRF modelling (WASA 1)
Conclusions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Trueness, a $(Y = a \cdot X)$</th>
<th>Spread, σ (σ_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind speed</td>
<td>101%</td>
<td>10%</td>
</tr>
<tr>
<td>Power density</td>
<td>103%</td>
<td>31%</td>
</tr>
<tr>
<td>Turbine yield</td>
<td>101%</td>
<td>22%</td>
</tr>
</tbody>
</table>

- GWA provides on average a reliable picture of the wind climate and wind resources for both
 - Onshore and offshore conditions
- The spreads of GWA-based predictions of wind speed, power density and yields are significant
 - Single predictions may deviate significantly
- GWA predictions may be strongly biased in
 - Complex and steep topography
 - Flows with strong mesoscale forcing
- No simple correlation between prediction statistics and length of observed time-series
- Global Wind Atlas fulfils its intended role, and may also be used for
 - Project preparation
 - Measurement campaign design
Acknowledgements

• China Meteorological Administration (CMA)
• Danish Ministry of Foreign Affairs (Danida)
• DTU Course 46200 – classes of 2016 and 2017
• Joule project “Measurements and modelling in complex terrain”
• Sund & Bælt
• Wind Atlas for Egypt project
• Wind Atlas for South Africa project (WASA 1 & 2)
• Winddata.com
• WindEurope CREYAP initiative

Thank you for your attention!