X-Ray and Raman studies on all-solid-state Li-S batteries built around LiBH4 solid electrolyte

Lefevr, Jessica; Das, Supti; Blanchard, Didier

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Materials Poster Abstract

X-Ray and Raman studies on all-solid-state Li-S batteries built around LiBH$_4$ solid electrolyte

Jessica Lefevre1, Supti Das1, Didier Blanchard1

1Department of Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark

Efficient energy conversion and storage is crucial for development of systems based on renewable energy sources. For electricity storage, Li-ion batteries are commonly used in electronics devices but require many improvements to obtain longer life-time and higher energy densities. The current use of organic liquids and gels electrolytes limits these improvements because of lithium dendrites formation, reducing the lifetime of the battery and which can possibly be hazardous due to risks of short circuits.

Many alternatives to current state-of-art lithium-ion batteries exist; among them are lithium-sulfur solid-state batteries, solid electrolytes having higher stability when compare to liquid electrolytes, with no risks of vaporization and leakage while sulfur cathodes have large theoretical energy density. LiBH$_4$ is a promising material for solid-state batteries as it is lightweight and stable electrochemically at least up to 6 V. While the orthorhombic phase (Pnma), stable at room temperature has a low ionic conductivity ($\sim 10^{-5}$ mS cm$^{-1}$ at 30 °C), the hexagonal phase (P63/mmc), stable above 110 °C, has a much higher ionic conductivity (~ 1 mS cm$^{-1}$ at 120°) [1]. Confinement of LiBH$_4$ in mesoporous SiO$_2$ allows obtaining fast ionic conductivity even at room temperature.

We have successfully built and cycled solid-state lithium-sulfur batteries based on LiBH4 and have performed in operando X-ray diffraction, -tomography and Raman spectroscopy measurements on capillary cells of 1 mm in diameter. Figure 1 shows a capillary cell with an image obtained from X-Ray tomography. Figure 2 shows Raman spectra of LiBH$_4$ in a capillary cell. X-Ray and Raman data deliver information on the electrochemistry of the battery helping to understand and improve the battery performances.

Figures on next page
X-Ray and Raman studies on all-solid-state Li-S batteries built around LiBH4 solid electrolyte

References