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Abstract: The introduction of Graphical Processing Units (GPUs) in scientific computing has
shown great promise in many different fields. While GPUs are capable of very high floating point
performance and memory bandwidth, its massively parallel architecture requires algorithms
to be reimplemented to suit the different architecture. Interior point method can be used to
solve convex optimization problems. These problems often arise in fields such as in Model
Predictive Control (MPC), which may have real-time requirements for the solution time. This
paper presents a case study in which we utilize GPUs for a Linear Programming Interior Point
Method to solve a test case where a series of power plants must be controlled to minimize the
cost of power production. We demonstrate that using GPUs for solving MPC problems can
provide a speedup in solution time.

Keywords: Linear Programming, Interior Point Methods, Model Predictive Control, Graphical
Processing Unit

1. INTRODUCTION

The Graphical Processing Unit (GPU) is the processing
chip on modern graphic cards. Due of the increasing
demand for advanced graphics, the GPU has developed
into a massively parallel chip with very fast floating
point computation and high memory bandwidth. These
properties make them attractive for not only graphics
rendering, but also many different scientific computations.

The use of GPUs for solving linear programming problems
have been looked at before in Spampinato and Elster
(2009), Bieling et al. (2010) and Lalami et al. (2011b)
and even extended to use multiple GPUs in Lalami et al.
(2011a). These papers focused on the use of the simplex
method and all showed achieved speedups with the use of
GPUs. While the simplex algorithm usually has good prac-
tical solve time, its worst-case is bounded in exponential
time.

Unlike the simplex method, interior point methods are
bounded by polynomial time. Interior point methods on
GPUs have been looked at in Hyuk et al. (2007), which
used GPGPU as it predates CUDA and OpenCL. A
more recent use of GPUs for interior point methods is
Smith et al. (2012), which uses a matrix-free interior point
method and the GPU is used for sparse matrix operations
in their preconditioned conjugate gradient solver when
computing the step.

In this paper, we describe the implementation of a Mehro-
tra predictor-corrector interior point method using GPUs
to lower the computation time. We test the implementa-
tion on a linear programming problem from Model Pre-
dictive Control (MPC). The test case is highly structured,

which allows us to exploit the structure of the matrices to
further improve the performance of the matrix computa-
tions. The GPU is utilized to do all the matrix operations
as well as the factorization and backsolve.

The solvers presented in this paper are a part of a MPC
toolbox, which aims to contain many different tools used
in MPC. Such tools include state space realization and
efficient solvers which utilizes structure and GPUs.

This paper is organized as follows. The test case used to
test the implementations is introduced in Section II. The
implemented algorithm is briefly introduced in Section III.
The structure of the matrices in the test case are described
in Section IV. The different implementations are described
in Section V and performance results of these are presented
in Section VI. Finally a look into the future of the toolbox
is described in Section VII and a conclusion is presented
in Section VII.

1.1 GPU computing

GPU computing has shown itself to be extremely effi-
cient at certain numerical computations. GPUs provide a
significant increase in computing performance and mem-
ory bandwidth compared to traditional CPUs (Central
Processing Units). The cost of these benefits is a more
complicated programming model and certain restrictions
on the type of workload which can fully utilize the perfor-
mance. Not all numerical computations are equally suited
for the architecture, due to the massive parallelism and
restrictions on how memory can be accessed to achieve
optimal performance.
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There are currently two major programming models avail-
able for programming GPUs, CUDA (Compute Unified
Device Architecture) and OpenCL (Open Computing Lan-
guage). CUDA is the programming model developed by
NVIDIA and is only available on NVIDIA GPUs, while
OpenCL is an open standard for heterogeneous program-
ming, which works on GPUs across vendors and even
on different architectures such as CPUs. While both of
these technologies are available today, CUDA is currently
more mature with several advanced libraries available.
The implementation described in this paper is done us-
ing CUDA and utilizes CUBLAS and MAGMA to sim-
plify the implementation. CUBLAS is a BLAS (Basic
Linear Algebra Subprograms) implementation for CUDA
developed by NVIDIA, which contains many basic vector
and matrix operations such as matrix-vector and matrix-
matrix multiplication. MAGMA is a LAPACK (Linear
Algebra PACKage) implementation for heterogeneous sys-
tems, which contains more advanced algorithms such as
Cholesky factorization.

2. TEST CASE

Our test case is a control problem from Model Predictive
Control (MPC) related to power production. It is a simpli-
fied version of the problem in Edlund et al. (2009), where
a series of power producers must be controlled in order to
satisfy the power demand. Given a reference which is the
power demand, the objective of the control problem is to
ensure sufficient power is produced to satisfy demand while
keeping production cost to the minimum. The different
power producers each have several real-world constraints,
such as bounds on the maximum power output of a power
plant and reaction rate. For instance, a coal power plant
may be cheap to use but also slow to react to changes in
its control signal.

The objective function of the control problem is to mini-
mize the cost of power production over a prediction hori-
zon of N time steps. The objective function of such a
problem can be written as

φ =

N−1∑
k=0

c′u,kuk

where cu,k is the production cost and uk is the control
signal for each power plant at a given time step. Due to the
constraints of the power producers, it may not always be
possible to meet the power demand. Slack variables with
a high cost are introduced to make the problem feasible
and can be considered as purchasing the remaining power
from another supplier, such as another power company.

The objective function with slack variables introduced is

φ =

N−1∑
k=0

c′u,kuk + c′s,k+1sk+1

where cs,k+1 is the cost of power from another supplier and
sk+1 is the slack variables for a given time step. The entire
control problem with constraints can then be written as a
constrained optimization problem as

min
u,s

φ =

N−1∑
k=0

c′u,kuk + c′s,k+1sk+1

s.t. xk+1 = Axk +Buk k = 0, . . . , N − 1,

yk = Cxk k = 1, . . . , N,

umin ≤ uk ≤ umax k = 0, . . . , N − 1,

∆umin ≤ uk ≤ ∆umax k = 0, . . . , N − 1,

yk ≥ rk − sk k = 1, . . . , N,

sk ≥ 0 k = 1, . . . , N,

where xk+1 is the state computed from the discrete-
time state space realization, yk is the power production,
umin and umax are the lower and upper bounds on the
control signal, ∆umin and ∆umax are the rate of movement
bounds on uk and rk is the power demand reference.

In order to solve this control problem with a standard
interior point method, we reformulate the problem into
the standard form

min
x

g′x

s.t. Ax ≥ b,

where

g =

[
cu
cs

]
, x =

[
u
s

]
, A =


−I 0
I 0
0 −I
−Ψ 0
Ψ 0
Γ I

 b =


Umin

Umax

0
bl
bu

R− Φx0

 (1)

.

as described in Edlund et al. (2009).

3. ALGORITHM

The algorithm used to solve the test case is a primal-dual
interior-point method for linear programming problems
with only inequality constraints in the following form,

min
x

f(x) = g′x

s.t. Ax ≥ b

By only having inequality constraints, it is possible to re-
duce the problem to a symmetric positive-definite Hessian
and use Cholesky factorization to solve the affine step. The
factorization can be done once per iteration and reused for
the corrector step. The algorithm is shown in Listing 1.

4. STRUCTURE OF MATRICES

The interior point method consists of mostly different
vector operations, which are very cheap to compute. The
largest computational tasks in the algorithm are matrix-
matrix multiplication when computing the Hessian, H,
and its subsequent Cholesky factorization as well as the
matrix-vector multiplications with the constraint matrix,
A.

A straight-forward implementation is to simply compute
with a dense A-matrix, however by looking at the matrices
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Listing 1. Primal-Dual Interior Point Method
% Compute r e s i d u a l s
rL = g −A′λ
rS = s−Ax+ b
rSL = SΛe

µ = S′Λ
m

whi le (µ > tol or ||[rH; rA; rC; rS]||inf > tol )
% F a c t o r i z a t i o n
H = A′(S−1Λ)A
[L] = chol(H)
% Af f i n e s tep
r̄ = A′(S−1(rSL − ΛrS))
ḡ = rL + r̄
∆x = L′\(L\(−ḡ))
∆s = −rS +A∆x
∆λ = −S−1(rSL + Λ∆s)
Compute s tep length α such that

φ+ α∆φ ≥ 0 and s+ α∆s ≥ 0 .
% Center parameter
saff = s+ α∆s
λaff = λ+ β∆λ

µaff =
s′
aff

λaff

m

σ = (
µaff

µ
)3

τ = σµe
% Center c o r r e c t o r
rSL = rSL + ∆S∆Λe− τ
% Solve center−c o r r e c t o r s tep
r̄ = A′(S−1(rSL − ΛrS))
ḡ = rL + r̄
∆x = L′\(L\(−ḡ))
∆s = −rS +A∆x
∆λ = −S−1(rSL + Λ∆s)
Compute s tep length α such that

φ+ α∆φ ≥ 0 and s+ α∆s ≥ 0 .
% Take step
x = x+ (η ∗ α) ∗∆x
λ = λ+ (η ∗ α) ∗∆λ
s = s+ (η ∗ α) ∗∆s
% Compute r e s i d u a l s
rL = g −A′λ
rS = s−Ax+ b
rSL = SΛe

µ = S′Λ
m

end

in (1), it is obvious that they have are highly structured
and sparse. Most MPC systems consists of a series of
bound constraints and rate of movement constraints, as
well as the dynamics of the system. Bound constraints
appear as simple identity matrices in the constraint ma-
trix, while rate of movement constraints also have a highly
sparse banded structure, denoted as Ψ, which can be uti-
lized to do efficient sparse-matrix multiplication. The out-
put constraints are computed with Γ, which is a Toeplitz
matrix. While its lower triangle is dense, it contains a lot
of repetition which makes it possible to store the matrix
much more efficiently by simply storing the first set of
columns. This is also noted in Edlund et al. (2009), where
they describe efficient methods to compute with their A-
matrix. These methods can be adapted to our test system,
as well as other LP MPC systems with bound constraints
and rate of movement constraints.

Table 1. Solver implementation

Name Implemented in Exploits structure GPU

LPippd MATLAB No No

LPippdGPU MATLAB No Yes

LPippdExGPU C + CUDA No Yes

LPippdPP MATLAB Yes No

LPippdPPGPU MATLAB Yes Yes

LPippdPPExGPU C + CUDA Yes Yes

5. IMPLEMENTATIONS

We’ve implemented the solver described in listing 1 in
multiple versions to study the importance of utilizing
structure as well as the benefit of GPUs. The solver has
been implemented in MATLAB, both with and without
MATLAB GPU support, as well as a version implemented
entirely with C and CUDA by using BLAS and LAPACK
libraries for GPU. Additionally, each solver has been
implemented as both entirely dense solvers and as a solver
which utilizes the structure of the A-matrix. A complete
list of the different solver implementations is shown in
Table 1.

5.1 LPippd

This is a straight-forward MATLAB implementation of the
algorithm using dense matrix multiplications.

5.2 LPippdGPU

LPippdGPU is the MATLAB implementation of the al-
gorithm, which uses the MATLABs built-in GPU support
for accelerating some of the operations. GPU support in
MATLAB was added in version 2011a and straightforward
to use on systems equipped with a CUDA-capable device.
The function GPUArray can be used to copy data to the
GPU and any operations on GPU-resident data is done
automatically on the GPU if MATLAB has support for
the operation. However MATLAB only supports a limited
set of operations on the GPU and any operations which
are not supported on GPU by MATLAB significantly
reduces the performance due to memory transfers between
the CPU and GPU. Additionally, only dense matrices are
supported. The function gather can be used to copy data
back from the GPU to the CPU manually.

In our initial implementation of LPippdGPU, we tried
to simply copy all the matrices and vectors to GPU
and do the entire algorithm on the GPU. The matrix
multiplication operations and the Cholesky factorization
was accelerated substantially. However the performance of
computation of the step length had worsened. This is due
to the lack of support for certain operations on the GPU
in MATLAB, which caused MATLAB to copy data back
to the CPU, compute on the CPU and then copy back to
the GPU.

Since the primary workload is in the matrix-multiplication
for creating the Hessian and the Cholesky factorization,
we modified the LPippdGPU to simply accelerate these
two parts instead. This allows MATLAB to use the CPU
for the step length computation, while still accelerating
the main workload with the GPU. This results in a much
better performance than the previous version.
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5.3 LPippdExGPU

LPippdExGPU is the implementation of the algorithm in
C and CUDA. Many of its operations can be done using
BLAS and LAPACK routines, while a few has required an
implementation of a kernel for optimal performance.

The operations on diagonal matrices have been done
using a vector to store the diagonal and doing element-
wise vector operations to compute the result, such as the
computation of ΛS−1 in the Hessian matrix multiplication.
Kernels for element-wise multiplication and division have
been implemented, as element-wise operations are not part
of BLAS.

The computation of the step length is a specialized type
of reduction, which must compute −S(∆S)−1 and find
the smallest diagonal value, but only for elements where
∆S < 0. This is done by implementing a specialized
reduction kernel based on Mark Harris’ efficient reduction
kernel described in Harris (2007).

All the operations are done on the GPU to avoid the data
transfer between CPU and GPU.

5.4 LPippdPP* variants

The LPippdPP* variants of the solver are the ones uti-
lizing the structure of the A-matrix. The operations for
matrix-vector multiplication as well as the computation
of the Hessian have been implemented as functions which
are specific for our test case. When the solver needs to
do operations with the A-matrix, it simply invokes these
functions instead of using the A-matrix to do matrix-
vector and matrix-matrix multiplication.

6. RESULTS

The implemented methods have been tested on a computer
system at GPUlab at the Technical University of Denmark
(DTU). The system contains a Intel Core i7 930 CPU, 12
GB RAM and a NVIDIA Tesla C2050 GPU and contains
MATLAB 2011b, CUDA 4.1 and MAGMA 1.1.

The external CUDA versions, LPippdExGPU and LPip-
pdPPExGPU, are implemented as a separate program
as it wasn’t possible to make MEX work properly with
CUBLAS and MAGMA due to dynamic library linking
problems. When calling these solvers, MATLAB writes the
problem matrices to disk and invokes an external program
through the system function. The external program then
reads the problem from disk, solves the problem with the
CUDA solver and writes the solution to disk, which is then
read back into MATLAB. The cost of this is included in
the solution time in our results, even though the actual
solve time is slightly less due to the overhead of the I/O.

There are two different parameters which can be increased
to produce a larger system and determine how the solvers
performance scale. We can either increase the prediction
horizon and keep the number of power plants fixed or
we can keep a fixed prediction horizon and increase the
number of power plants. The effect of these two changes
on the A-matrix is very different.
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6.1 Increasing the prediction horizon

Increasing the prediction horizon will increase the number
of dense rows in the A-matrix by increase the number of
rows in Γ which represents the dynamics in the system.
While the A-matrix remains sparse due to the bound
and rate-of-movement constrants, the increased size of Γ
increases the use of dense matrix-matrix multiplication in
the solver.

The test is done by benchmarking the algorithm on a prob-
lem with two power plants with an increasing prediction
horizon. The solution time of the different solvers is shown
on Figure 1 and a speed-up plot with LPippd as reference
is shown on Figure 2.

The speedup is approximately 2x by simply using MAT-
LABs built-in GPU support and 6x by using own GPU
implementation when the problem is large enough. MAT-
LABs own solver linprog seems to suffer on this type of
system, as it handles matrices as sparse and only achieves
a performance similar to our own naive LPippd.

By utilizing the matrix structure efficiently, we can achieve
a significant boost to the performance of the algorithm.
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The simple MATLAB implementation achieves a 4x speed-
up, while the GPU version manages a 13x speedup. The
speedup in our own GPU implementation outperforms all
of the other solvers by achieving a speedup of up to 23x
compared to LPippd, despite including the cost of calling
a separate program to do the computation.

An example of the solution of the test case for prediction
horizon of 500 is shown in figure 5.

6.2 Increasing the number of power plants

Increasing the number of power plants does not affect
the number of rows in Γ. This results in a larger system
which is highly sparse, which is particularly beneficial for
MATLABs own solver, linprog, as it handles matrices as
sparse internally.

The test is done by keeping the prediction horizon fixed
to 100 and increasing the number of power plants. The
solution time of the different solvers is shown on Figure 3
and a speed-up plot with LPippd as reference is shown on
Figure 4.

As expected, MATLABs linprog achieves much better
performance in this case and manages a speedup of up to
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Fig. 5. Solution for N = 500 with two plants

21x compared to the dense implementation in MATLAB,
even outperforming GPU implementations in MATLAB
which is likely due to the high sparsity of the A-matrix.
Clearly it is necessary to exploit the structure of the matrix
to achieve decent performance in this case. Our own GPU
implementation which does exploit structure still manages
to outperform linprog and is roughly two times faster than
linprog.

7. FUTURE

The toolbox containing the solvers is an ongoing work and
the aim is to provide an efficient toolbox for MPC without
reliance on MATLAB and other expensive program pack-
ages for production use, but still providing support for
these tools during the development phase. In the future,
more functions will be added to simplify the use of the
solvers and set up of MPC problems using the toolbox.

8. CONCLUSION

We have implemented a GPU-accelerated interior point
method for solving linear programming problems with
inequality constraints. The solver is implemented in both
MATLAB and in C with CUDA and has been tested on a
test case from MPC. Variants of the solver which exploit
the structure of the particular test case have also been
implemented and the importance of exploiting structure
in sparse optimization problems has been demonstrated.
We have shown that the use of the GPU can provide a
speedup in the solution time. The speedup from using the
GPU is higher when the problem is more dense, but the
GPU can still provide a speedup even when problem is
sparse if the matrix structures are exploited.
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