Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry

Bak, Martin; Jølck, Rasmus Irming; Eliasen, Rasmus; Andresen, Thomas Lars

Published in:
Bioconjugate Chemistry

Link to article, DOI:
10.1021/acs.bioconjchem.6b00221

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Affinity Induced Surface Functionalization of Liposomes using Cu-free Click Chemistry

Martin Bak, Rasmus I. Jølck, Rasmus Eliasen and Thomas L. Andresen*

Department of Micro- and Nanotechnology, DTU Nanotech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Building 423, DK-2800 Kgs. Lyngby, Denmark

* Prof. Thomas L. Andresen, E-mail: Thomas.andresen@nanotech.dtu.dk

ABSTRACT

Functionalization of nanoparticles is a key element for improving specificity of drug delivery systems toward diseased tissue or cells. In the current study we report a highly efficient and chemoselective method for post-functionalization of liposomes with biomacromolecules, which equally well can be used for functionalization of other nanoparticles or solid surfaces. The method exploits a synergistic effect of having both affinity- and covalent anchoring tags on the surface of the liposome. This was achieved by synthesizing a peptide linker system that uses Cu-free strain-promoted click chemistry in combination with histidine affinity tags. The investigation of post-functionalization of PEGylated liposomes was performed with a cyclic RGDfE peptide. By exploring both affinity and covalent tags a 98 ± 2.0% coupling efficiency was achieved, even a diluted system showed a coupling efficiency of 87 ± 0.2%. The reaction kinetics and overall yield were quantified by HPLC. The results presented here opens new possibilities for constructing complex nanostructures and functionalized surfaces.

INTRODUCTION

Nanoparticle based carrier systems are heavily investigated as therapeutic and diagnostic delivery vectors, and they have the potential to improve clinical practice by offering better diagnosis, treatment and management of human disease.¹ ² Functionalized nanomaterials for use in drug delivery with targeting ligands on the surface have received considerable attention due to the potential of increasing drug
bioavailability at the diseased site by targeting selective or overexpressed receptors on the target cells.\(^3-5\)

Targeting ligands can broadly be classified as proteins (e.g. antibodies and their fragments), nucleic acids (aptamers) or other receptor ligands (e.g. carbohydrates, peptides, and vitamins). A vast number of bioconjugation methods have been reported for functionalization of liposomes and nanoparticles, all of which have their pros and cons.\(^6,7\) The method developed in this paper uses liposomes as an exemplifying nanomaterial where both covalent and non-covalent functionalization of nanoparticles is utilized.

Post-functionalization of liposomes is typically the method of choice when functionalizing with large and complex ligands such as proteins and antibodies or fragments thereof. This technique ensures the absence of ligand in the interior space of the liposome, thus less ligand is required. Unfortunately, ligand conjugation by post-functionalization can suffer from low yield and large batch-to-batch variation. For some targeting ligands, it is a necessity that they are attached to liposomes by post-functionalization, because larger proteins, e.g. antibodies, are vulnerable to denaturation, hence chemical reactions compatible with the aqueous environment is a prerequisite. Conjugation techniques have until now only been focused on a single attachment point on the liposome surface by either a covalent\(^6,8\) or non-covalent coupling\(^9-11\). Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC) of azides to terminal alkynes has served as a benchmark for a decade, due to the excellent stability of the formed triazole, excellent orthogonality towards other functional groups and easy accessibility of azide and alkyne tags. While the conventional CuAAC reaction\(^12,13\) is commonly employed in surface derivatization and polymer synthesis\(^14-16\), the use of metal catalyst often limits its utilization in biological settings. Copper ions are cytotoxic\(^17\), can cause DNA degradation\(^18,19\) and induce protein denaturation\(^20\) resulting in loss of the native properties of the attached macromolecule. By substituting terminal alkynes with strain-promoted\(^21\) or electron deficient alkynes\(^22\), triazole formation can be achieved without the addition of catalyst under ambient conditions without disrupting the function of the immobilized macromolecule. This approach has previously been employed for modification of quantum dots\(^23\), liposomes\(^24-26\), proteins\(^27,28\) and living cells and organisms\(^29-31\). We have previously showed effective coupling of a somastostatin receptor targeting peptide (TATE) to the lipid moiety via strain-promoted alkyne-azole [3+2] cycloaddition (SPAAC).\(^5,32\)
Recombinant proteins have found widespread use in the growing field of proteomics. Affinity tags are routinely used for fixation of recombinant hybrids to facilitate their purification. In addition to purification and immobilization of biomolecules, they also support a variety of applications such as protein labeling, targeting approaches, 2D crystallization, and biosensing. The parameter-dependent binding affinity of histidine affinity tagged (His-tagged) proteins to nitrilotriacetic acid (NTA) or trisNTA has been explored regarding length of the poly-His-tag, multivalency of NTA moieties, and accessibility of NTA moieties on the surface. The aim of these studies was to create a highly efficient receptor system. For example, a His-tag containing six histidine-residues have been shown to have binding affinity in the subnanomolar range, while an increase in histidine-residues resulted in a decreased affinity for binding to the divalent transition metal ions (Ni^{2+}, Zn^{2+}, Co^{2+} or Cu^{2+}). This presents a non-covalent approach to ensure a controlled display of macromolecules on the surface of liposomes.

We envisioned that liposomes exposing affinity tags in addition to chemically reactive functionalities would aid in the attraction and orientation of the macromolecules thus affecting the kinetic profile and the coupling efficiency of surface conjugation reactions. To test the hypothesis we have investigated PEGylated liposomes with NTA-chelates, strained cyclooctynes and a combination of both at the liposome interface and shown that post-functionalization of His-tagged cyclic RGDfE exposing an azide functionality in close proximity to the His-tag can be induced using this strategy. We believe this general concept seen in Figure 1, exemplified by affinity induced surface functionalization of liposomes, will be highly beneficial when designing new functionalized nanomaterials, especially in highly diluted environments.
Figure 1. Linker system (4) for post-functionalization of liposomes. Red box: Targeting moiety, c(RGDfE). Blue box: Azide and strained cyclooctyne for SPAAC coupling. Green box: His−tag and nitrilotriacetic acid (NTA) for formation of hexa-coordinated nickel complex.
RESULTS AND DISCUSSION

Scheme 1. Synthesis of the c(RGDfE) functionalized peptide linker (3 and 4)

Synthesis and Characterization. The c(RGDfE) functionalized linker peptides 3 and 4 were prepared using a SPPS strategy as shown in Scheme 1. Intramolecular cyclization was achieved using an orthogonal protection group scheme. Peptides 3 and 4 were cleaved from the solid support using TFA:TIPS:H2O and subsequently purified by HPLC. Laser-induced reduction of the azido functionality to the corresponding amine was observed during MALDI-TOF MS analysis as previously observed by Budyka et al. The intact azido functionality was confirmed by FT-IR analysis at 2112 cm⁻¹. A His₆-tag was successfully synthesized.
and isolated, but a large degree of aggregation was observed for this molecule in aqueous solutions. This would presumably create complications in the later liposome study. A His$_3$-tag was made, which was sufficient to create the coupling to the chelate of NTA-Ni$^{2+}$ ($K_D = 2.23 \times 10^{-6}$ M)37 and limit the aggregation. This was also in correspondence with a previous study by Knecht et al.37,10

In order to formulate liposomes exposing the appropriate chemical functionalities at the distal end of the PEG-layer, the desired functionalized PEGylated phospholipids were synthesized in solution from either DSPE-PEG$_{2000}$-NH$_2$ or DSPE-PEG$_{2000}$-NHS. The phospholipid with the strained cyclooctyne at the distal end of the polymer was synthesized by acylating DSPE-PEG$_{2000}$-NH$_2$ with 1-fluorocyclooct-2-ynecarboxylic acid.32 1-Fluorocyclooct-2-ynecarboxylic acid was synthesized as described elsewhere.43 DSPE-PEG$_{2000}$-NTA was synthesized in a single acylation step between DSPE-PEG$_{2000}$-NHS and NTA.

Three different compositions of liposomes were prepared in order to investigate the effect on surface conjugation efficiency induced by having an affinity tag present on the liposomal surface. A concentrated TRIS/HCl buffer was used to minimize non-specific electrostatic interactions when using the negatively charged Ni-NTA complex.44 Formed liposomes were characterized by DLS and ζ-potential (Table 1), and stored at 5 °C until use. Post-functionalization investigations were carried out by adding the required components for the individual reactions (e.g. Ni$^{2+}$ for the His-tag affinity coupling), followed by addition of 4 in CH$_3$OH. Liposome integrity was tested in different concentrations in the final solvent mixture by DLS to ensure their stability in the given reaction environment. The CH$_3$OH concentration of 1.5-3 % was not found to affect the stability of the liposomes. All reactions were monitored for 72 h by HPLC using UV/VIS-detection. The conjugation efficiency was calculated based on the AUC for 4 and the DSPE-PEG$_{2000}$-c(RGDfE) conjugate. Triplicates of all reactions were carried out to ensure reproducibility and elucidate the variance of the post-functionalization reactions at the liposomal surfaces.

Table 1. DLS and Zeta-potential measurements of the liposome formulations

<table>
<thead>
<tr>
<th>Entry #</th>
<th>DLS</th>
<th>Zeta-potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115.2 ± 0.9 nm</td>
<td>-4.02 ± 2.85 mV</td>
</tr>
<tr>
<td>2</td>
<td>115.8 ± 1.7 nm</td>
<td>-9.68 ± 2.56 mV</td>
</tr>
<tr>
<td>3</td>
<td>112.1 ± 0.7 nm</td>
<td>-2.22 ± 3.06 mV</td>
</tr>
</tbody>
</table>
Coupling of 4 to preformed liposomes by SPAAC. The efficiency of the individual conjugation techniques was first addressed. Coupling of 4 to preformed liposomes via SPAAC reaction was investigated using the DSPE-PEG₂₀₀₀-cyclooctyne (5) and azide functionalized 4. The combined data acquisition gave the conclusive result that the SPAAC chemistry proceeds in good yield, with a mean conversion of 83±1.5 % after 72 h at rt (Figure 2) in good correlation with previous work by Feldborg et al.³². Presence of Ni²⁺ during the SPAAC reaction did not alter the reaction kinetics or conversion degree (data not shown).

Figure 2. Coupling efficiencies of 4 to DSPE-PEG2000-cyclooctyne (5) by SPAAC chemistry at the liposome surface (Liposome 1). All values are means ± SEM (n = 3).

Complexation of 4 to preformed liposomes by His₃-tag. Complex-formation to preformed liposomes via His-tag was investigated using the DSPE-PEG₂₀₀₀-NTA (6) and His₃-tag functionalized 4. Reactions were carried out using two different amount of Ni²⁺ (1 or 10 equiv.) to investigate how the Ni²⁺-concentration affected the complex formation with 4. No notable difference in using 1 or 10 equiv. of Ni²⁺ was observed, hence, 1 equiv. was used onwards. The dissociation constants of four Ni-NTA complexes have been taken into consideration to verify the affinity based complex formation between the liposome and targeting ligand (Ni²⁺-His-tag complex: $K_D \approx 10^{-6}$ M, Ni²⁺-Imidazole: $K_D = 9.8 \times 10^{-4}$ M, Ni²⁺-NTA: $K_D = 1.8 \times 10^{-11}$ M and Ni²⁺-EDTA complex: $K_D = 4.0 \times 10^{-19}$ M)⁴⁵⁻⁴⁸. Firstly, the reversibility of the complex was tested by competitive complexation to determine the stability of the complex. Trans-complexation by addition of acetic acid resulted in recovery of 4 as analyzed by HPLC. Furthermore, in order to confirm the NTA-Ni²⁺-
His-tag complex formation, imidazole was added to the Ni-NTA complex prior to addition of 4, thus hindering the coupling of the His-tag. Because the K_D of the NTA-Ni$^{2+}$-Imidazole complex is larger than K_D for the NTA-Ni$^{2+}$-His$_3$-tag complex, the His$_3$-tag will still associate to the Ni-NTA complex but to a less extent than previously observed. Hindering the Ni-NTA complexation with imidazole resulted in only approximately 10% association of 4 after 42 h. In comparison, the triplicate data showed a mean complex efficiency of 72 ± 2.0% after 72 h (Figure 3). This implies that imidazole is able to slow down the coordination degree significantly by competitive binding to the NTA-Ni$^{2+}$-moiety on the liposomal surface. Combined, the obtained data confirms that NTA-tags efficiently associate with His-tag ligands on the liposome surface and that the complexation is reversible as shown by trans-complexation.

![Figure 3](image_url)

Figure 3. Complexation efficiencies of 4 to DSPE-PEG2000-NTA-Ni$^{2+}$ (6) by a complex-formation via the His$_3$-tag at the liposome surface (Liposome 2). All values are means ± SEM (n = 3).

Affinity induced covalent coupling of 4 to liposomes. The liposome composition with both NTA (1 mol%) and cyclooctyne (1 mol%) moieties was incubated with Ni$^{2+}$ (1 equiv.) and was subsequently added 4. The progression of the affinity induced covalent coupling of 4 was monitored by HPLC. The complexation (NTA-Ni$^{2+}$-His$_3$-tag) was disrupted by addition of acetic acid to aliquots after 72 h, however, no change in AUC for the coupled product was observed. This confirmed that 4 is covalently attached to the liposome surface by triazole formation. Comparison of the conjugation studies of the SPAAC coupling versus the SPAAC reaction via the affinity His$_3$-tag shows that the His$_3$-tag is able to increase the coupling efficiency.
The mean conjugation of 4 by a SPAAC coupling was 83 ± 1.5% after 72 h whereas the pure affinity based association of His₃-tag was 72 ± 2.0%. Interestingly, the fact is that the mean conjugation of the combined system was significantly better by 98 ± 2.0% after 72 h, which can be explained by the higher local concentration of the targeting ligand at the liposomal surface due to the presence of the affinity tag. The combined data acquisition supports that the His₃-tag having a promoting effect on the SPAAC-coupling on the surface of preformed liposomes (Figure 4).

In order to validate this observation and further investigate the difference between the SPAAC-coupling versus the His₃-tag induced SPAAC-coupling surface functionalization of liposomes exposing both NTA (1 mol%) and cyclooctyne (1 mol%) moieties with 4 in highly diluted conditions was investigated.

![Figure 4](image) Coupling efficiencies of 4 to the liposome surface by SPAAC chemistry via affinity NTA-Ni²⁺-His₃-complex at the liposome surface (Liposome 3). All values are means ± SEM (n = 3).

Dilution test of conjugating 4 to preformed liposomes. Next we investigated the ligand conjugation under diluted conditions (diluted 5 fold) to investigate the effects of the affinity-based conjugation to the functionalized liposome surface. The reaction kinetics for the covalent coupling will decrease in the dilute system and the affinity complexation effect will presumably be more pronounced. The reaction kinetics decreased as expected in comparison to the study done under more concentrated conditions (Figure 5).
liposome formulation with the SPAAC-moiety showed a coupling efficiency of 58 ± 2.2% after 72 h, whereas the combined SPAAC and His3-tag system showed a coupling efficiency of 87 ± 0.2% after 72 h. The increased difference in coupling efficiency from 15 – 29 % between concentrated and dilute conditions, respectively, shows the potential of using affinity-based complexation followed by covalent conjugation for functionalizing liposomes.

Figure 5. Comparison of the diluted coupling efficiency study: Coupling of DSPE-PEG2000-cyclooctyne (5) and the peptide linker (4) to the liposome surface by SPAAC chemistry (○). Coupling efficiencies of 4 to the liposome surface by SPAAC chemistry via affinity NTA-Ni²⁺-His3-complex at the liposome surface (■). All values are means ± SEM (n = 3).

Table 2. Overview of the yields in the liposomal post-functionalization study determined by analytical HPLC

<table>
<thead>
<tr>
<th>Entry #</th>
<th>R₁</th>
<th>Yields after 72 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPAAC</td>
<td>83 ± 1.5%</td>
</tr>
<tr>
<td>2</td>
<td>His₃-Ni²⁺-NTA-tag</td>
<td>72 ± 2.0%</td>
</tr>
<tr>
<td>3</td>
<td>SPAAC via His₃-Ni²⁺-NTA-tag</td>
<td>98 ± 2.0%</td>
</tr>
<tr>
<td>4</td>
<td>Diluted SPAAC</td>
<td>58 ± 2.2%</td>
</tr>
<tr>
<td>5</td>
<td>Diluted SPAAC via His₃-Ni²⁺-NTA-tag</td>
<td>87 ± 0.2%</td>
</tr>
</tbody>
</table>

CONCLUSION

In conclusion, a conceptual new approach has been described for effectively post-functionalizing liposomes. It has been shown that it is possible to induce a covalent coupling via a synergetic effect with an affinity tag, see Table 2. The His₃-tag in the peptide linker system, 4, is able to improve the reaction kinetics of the
SPAAC chemistry. This presumably happens through an up-concentration at the interface of the liposome. The conjugation technique is bioorthogonal and chemoselective to the functional groups in most relevant ligands such as proteins and aptamers.

The mean conjugation efficiency of 4 by a SPAAC coupling was 83 ± 1.5% after 72 h and 72 ± 2.0% for the His$_3$-tag affinity complex-formation. The combined system was significantly faster and gave a total conjugation efficiency of 98 ± 2.0% after 72 h. This is a 15% improvement relative to the SPAAC coupling reaction, but also provides a method that would not require post-conjugation purification of unbound ligand. This is presumably due to favorable interactions between the liposome surface and the His$_3$-tag, which results in up-concentration of 4 at the liposome surface and thereby increased coupling efficiency. The symbiotic effect of the dual coupling setup was further verified in a dilution test were the difference in conjugation efficiency increased by 29%.

The findings described are useful for future post-functionalization designs not only for liposomes but also for other nanoparticles. This linker system has the potential to improve the post-functionalization of large and sterically hindered target molecules, such as antibodies or fragments hereof.

EXPERIMENTAL PROCEDURES

Materials

All chemicals were purchased from Sigma-Aldrich Inc. (Broendby, Denmark) unless otherwise stated. 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol$_{2000}$ (DSPE-PEG$_{2000}$), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)$_{2000}$] (DSPE-PEG$_{2000}$-NH$_2$), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[succinyl(polyethylene glycol)$_{2000}$] (ammonium salt) (DSPE-PEG$_{2000}$-NHS) were purchased from Avanti Polar Lipids Inc. (Alabama, USA). O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), Tentagel® Rink Amide Resin, 2-chlorotrityl resin and all Fmoc protected amino acids used for the solid phase peptide synthesis were purchased from GL Biochem (Shanghai, China). All chemicals and reagents were of analytical grade and used without further purification.
Instrumentation

Reactions were monitored by thin layer chromatography (TLC); visualization was carried out by UV-light exposure (254 nm) and KMnO₄-stain. Chromatography refers to open column chromatography on silica gel. Analytical reversed-phase high-performance liquid chromatography (RP-HPLC) was performed on a Gilson HPLC (Gilson Valvemate, UV/VIS-155, 321 Pump, 234 Auto injector) or Waters LC/MS (2695 HPLC system, 2998 UV/VIS, 3100 ZQ single quadrupole MS with ESI) by employing an XBridge™ C₁₈ 5 µm (4.6×150 mm), XBridge™ C₁₈ 3.5 µm (2.1×50 mm) or a Waters XTerra® C₈ 5 µm (4.6×150 mm) column. Semi-preparative HPLC was performed on a Waters Semi-preparative HPLC equipped with a Waters 600 Pump & Controller and a Waters 2489 UV/VIS Detector using a Knauer Eurosphere 100-5 C₁₈ (20×250 mm) column or a Waters XTerra® C₈ 5 µm (19×150 mm) column. HPLC Eluent A consisted of a 5 % CH₃CN aqueous solution with 0.1 % trifluoroacetic acid (TFA); HPLC Eluent B consisted of 0.1 % TFA in CH₃CN. Preparative HPLC analysis was monitored using UV/VIS detection at 220/280 nm. NMR spectra were recorded on a Varian Mercury 400 MHz Spectrometer. ¹H and ¹³C NMR were recorded at 400- and 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) relative to the solvent’s signal peak. Mass spectra were recorded on a Bruker Reflex IV MALDI-TOF Spectrometer using 2,5-dihydroxybenzoic acid (DHB) spiked with sodium trifluoroacetate in CH₃OH as matrix. FT-IR was recorded neat on a Perkin Elmer Instruments Spectra One FT-IR Spectrometer. Dynamic light scattering (DLS) and ζ-potential measurements were performed on a Brookhaven Instruments Corporation ZetaPALS ζ-potential analyzer. Phosphorous analysis was measured by ICP-MS performed on a Dionex™ ICS-5000+ system (Thermo Scientific™, Dreieich, Germany).

Synthesis

DSPE-PEG₂₀₀₀-1-fluorocyclooct-2-yne (5). DSPE-PEG₂₀₀₀-1-fluorocyclooct-2-yne (DSPE-PEG₂₀₀₀⁻ cyclooctyne) was synthesized as previously described by Jølck et al. and isolated as a white powder. MALDI-TOF MS (m/z): Calc. mass [M+H]⁺: 2967.9 ± n×44.0; found mass [M+H]⁺: 2968.3 ± n×44.0. ¹H-NMR (400MHz, CDCl₃): δ 6.83 (bs, 1H), 5.93 (bs, 1H), 5.22-5.16 (m, 1H), 4.35-4.01 (m, 10H),
3.95-3.89 (m, 2H), 3.62 (bs, 164H), 3.48-3.36 (m, 6H), 2.32-2.23 (m, 6H), 1.71-1.49 (m, 6H), 1.23 (bs, 56H),
0.85 (t, J= 6.6 Hz, 6H). FT-IR: ν(cm⁻¹) 3445.3, 2918.2, 2851.4, 1741.6, 1648.9, 1104.6.

DSPE-PEG₂₀₀₀-NTA (6). \(N_{ε,N_{ε}}\)-Bis(carboxymethyl)-L-lysine (9.1 mg, 34.6 μmol) and triethylamine (48 µL, 0.35 mmol) in anhydrous dimethylformamide (1.0 mL) were added to a flame dried flask containing DSPE-PEG₂₀₀₀-NHS (20.7 mg, 6.9 μmol) in anhydrous CH₂Cl₂ (1.0 mL) under argon atmosphere and with reaction molecular sieves (4 Å). The reaction was stirred at rt for 15 h after which the solvent was removed in vacuo and the product purified by semi-preparative HPLC employing a Waters X Terra® C₈ 5 µm (10x150 mm) column. Eluent: (A) 5 % CH₃CN + 0.1 % TFA in H₂O, (B) 0.1 % TFA in CH₃CN. Gradient profile: Linear gradient from 20 % B to 100 % B over 20 min. Flow rate: 7 mL/min. UV/VIS monitoring at 220 and 280 nm. Column temperature: 40 °C. DSPE-PEG₂₀₀₀-NTA was isolated as a broad homogenous peak with retention time of 10.8 min. The solvent was removed in vacuo and the product lyophilized from a mixture of H₂O and CH₃CN to give a white fluffy powder (9.1 mg, 40 %, purity > 98 %). MALDI-TOF MS (m/z): Calc. mass [M+H]⁺: 3212.9 ± n×44.0; found mass [M+H]⁺: 3213.1 ± n×44.0.

\[\mathrm{c(RGDfE)-EG₂-K(EG₂-N₃)-EG₂-His₃\ (4)}\]. The peptide linker was synthesized by solid-phase peptide synthesis (SPPS) on a Tentagel® resin (loading 0.25 mmol/g) with a Rink amide linker by standard Fmoc methodology. Each coupling was performed using 4.0 equiv. Fmoc protected amino acid, 3.95 equiv. HATU and 8 equiv. 2,4,6-collidine in DMF. Deprotection of the Fmoc group was carried out using 20 % piperidine in DMF for 2×5 min. Completion of each coupling and deprotection step was monitored by the Kaiser test. The first step was synthesis of Fmoc-EG₂-K(Alloc)-EG₂-(H(Trt))₃-resin. Removal of Alloc protection group on the lysine residue was achieved by washing the resin with dry CH₂Cl₂ (5×30 sec) under N₂-atmosphere. A solution of PhSiH₃ (24 equiv.) in dry CH₂Cl₂ was mixed with the resin. A dispersion of Pd(PPh₃)₄ (0.5 equiv.) in dry CH₂Cl₂ was added and stirred for 10 min with N₂-atmosphere. The peptide was washed with

1. δ 5.17 (m, 1H), 4.07 (m, 2H), 4.01-3.69 (m, 4H), 3.54 (m, 180H), 3.51-3.46 (m, 4H), 3.42 (t, 2H), 3.36 (t, 1H), 3.17-3.09 (m, 4H), 2.27-2.19 (m, 4H), 2.14-2.09 (m, 4H), 1.80 (m, 2H), 1.66 (f, 2H), 1.61-1.30 (m, 8H), 1.20 (m, 58H), 0.81 (t, 6H). FT-IR: ν(cm⁻¹) 3337.3, 2918.5, 2852.1, 1696.9, 1106.2.
CH₂Cl₂ (8×30 sec) and the process was repeated. N₃-EG₂-COOH was coupled to the deprotected lysine side chain as described above. The couplings where continued at the N-terminal end with the linear peptide sequence Fmoc-R(Pbf)-G-D(Bu)-f-E-OAll. Allyl deprotection on the glutamic acid residue was achieved using the same procedure like for deprotection of the lysine residue, but repeated twice. The intramolecular cyclization was achieved by deprotecting Fmoc followed by standard HATU coupling procedure for 16 h. The resin was cleaved with TFA:triisopropylsilane(TIPS):H₂O (95:2.5:2.5) for 2 h. Final purification was achieved by semi-preparative HPLC by employing a Waters XTerra® C₈ 5 µm (19x150 mm) column. Eluent: (A) 5 % CH₃CN + 0.1 % TFA in H₂O, (B) 0.1 % TFA in CH₃CN. Gradient profile: Linear gradient from 0 % B to 100 % B over 20 min. Flow rate: 17 mL/min. Solvent for injection: H₂O/acetic acid (4:1). The solvent was removed in vacuo and the product lyophilized from a mixture of H₂O and CH₃CN to give a white fluffy powder (4) (41.8 mg, 24 %, purity > 97 %). MALDI-TOF MS (m/z): Calc. mass [M+H]⁺: 1604.7, found mass [M+H]⁺: 1604.6. FT-IR: ν(cm⁻¹) 3022; 2926; 2868; 2112; 1668; 1201; 1127; 1107; 698.

Liposome Formulation

Liposomes exposing 1 mol% of the reactive cyclooctyne (5), the NTA affinity tag (6) or both were prepared with an overall PEGylation density of 5 mol%. The functionalized liposomes composed of DSPC/DSPE-PEG₂₀₀₀/DSPE-PEG₂₀₀₀-R (95:4:1) (R = cyclooctyne (5), NTA (6)) and DSPC/DSPE-PEG₂₀₀₀/DSPE-PEG₂₀₀₀-cyclooctyne (5)/DSPE-PEG₂₀₀₀-NTA (6) (95:3:1:1) were prepared by the method described by Bangham et al. Lipids were dissolved in CHCl₃:CH₃OH (9:1) and mixed in the desired ratios. The solvent was removed under a stream of nitrogen, and the lipid films placed under vacuum overnight to remove remaining traces of organic solvent. The obtained films were hydrated in tris(hydroxymethyl)-aminomethane (TRIS)/HCl buffer (100 mM, pH 8) at 65 °C for 1 h and vortexed every 10 min followed by 10 freeze-thaw cycles to form multilamellar liposomes. Unilamellar liposomes of approximately 100 nm in size were prepared by extrusion (Avanti® Mini-Extruder) of the multilamellar lipidosome suspension 21 times through a 100 nm polycarbonate filter (Nuclepore®) at 65 °C. The resulting unilamellar liposomes were stored at 5 °C until usage. The Ni-NTA-complex was initiated by addition of NiCl₂ (1 or 10 equiv. in H₂O), followed by 2 h incubation.
Liposome Characterization

The hydrodynamic diameter of the formed liposomes was analyzed by DLS and their ζ-potentials measured using a Brookhaven Zeta PALS analyzer. Buffer: Sterile TRIS/HCl buffer (100 mM, pH 8). Dilution factor: 500. Number of runs: 10 runs per analysis. All liposomes were in the 110 nm range and all ζ-potentials were slightly negative. The lipid concentration after extrusion was determined by measuring the phosphor content by ICP-MS and the overall liposome concentration adjusted accordingly.

Post-functionalization of Liposomes

Preformed functionalized liposomes (25 mM, 500 µL or 5 mM, 1000 µL) were mixed with 4 (15 µL in CH₃OH, 0.5 equiv.) giving an overall ligand concentration of 67 µM and 13 µM. The reactions were shaken at rt and aliquots (40 µL or 100 µL) were removed at specific time intervals for analysis by analytical HPLC. Sample aliquots were stored at -80 °C to quench the functionalization prior to HPLC analysis. The coupling efficiency was monitored by analytical HPLC employing a Waters X Terra® C₈ 5 µm (4.6 x 150 mm) column or Waters XBridge™ C₁₈ 3.5 µm (2.1 x 50 mm). Eluent: (A) 5 % CH₃CN + 0.1 % TFA in H₂O, (B) 0.1 % TFA in CH₃CN. Gradient profile: Linear gradient from 0 % B to 100 % B over 20 min. Flow rate: 1.0 mL/min. The coupling efficiency was calculated based on the area under the curve (AUC) for 4 and the DSPE-PEG₂₀₀₀ conjugated product by using UV/VIS-detection at 220 nm.

AUTHOR INFORMATION

Corresponding Author

E-mail: Thomas.andresen@nanotech.dtu.dk

Notes

The authors declare no competing financial interest.
ACKNOWLEDGEMENT

The authors acknowledge financial support provided by the Technical University of Denmark (DTU) and the Lundbeck Foundation.

ABBREVIATIONS

AUC, Area Under the Curve; DLS, Dynamic Light Scattering; DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; EPR, Enhanced Permeability and Retention; HPLC, High-Performance Liquid Chromatography; ICP-MS, Inductively Coupled Plasma Mass Spectrometry; MALDI-TOF MS, Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry; NTA, Nitrilotriacetic Acid; SPAAC, Strain Promoted Azide-Alkyne [3+2] Cycloaddition; SPPS, Solid Phase Peptide Synthesis; TATE, [Tyr3,Thr8]-octreotate.
REFERENCES

Table of Contents Artwork