Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range

Timar-Gabor, Alida; Constantin, Daniela; Buylaert, Jan-Pieter; Jain, Mayank; Murray, Andrew; Wintle, A.G.

Published in:
Radiation Measurements

Link to article, DOI:
10.1016/j.radmeas.2015.01.013

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Abstract

SAR-OSL investigations on quartz from Romanian loess resulted in non concordant fine and coarse-grain ages for equivalent doses higher than ~100 Gy. The laboratory dose response for both grain sizes is well represented by a sum of two saturating exponential functions, fine and coarse grains characterised by D_{01} and D_{02} values of ~140 and ~1400 Gy and ~65 and ~650 Gy respectively. Pulsed OSL experiments confirmed that this behaviour is almost certainly inherent to quartz and not caused by contamination with another mineral. Natural dose-response curves do not follow the same pattern and enter saturation much earlier. Analysis of time resolved spectra indicated similar luminescence lifetimes for both fine and coarse quartz grains, and natural and laboratory generated OSL signals seem to use the same non-dose-dependent recombination pathways. The natural signals of a sample with an expected equivalent dose of 2000-2500 Gy were found to be below the saturation level of the laboratory dose response curve for both grain sizes; this also applied to the luminescence signals measured after >5000 Gy given on top of natural doses.

Keywords: quartz; CW-OSL; TR-OSL; SAR protocol; dose response.

1. Introduction

Many thousands of optically stimulated luminescence (OSL) ages have been produced in the last decade using quartz, mainly using the simple single-aliquot regeneration (SAR) protocol (Murray and Wintle, 2000) and the modified SAR protocol (Murray and Wintle, 2003). The basic and fundamental assumption of luminescence dating is that the growth of the luminescence signal in nature can be reproduced under laboratory conditions by performing irradiations with a calibrated beta or gamma source. This comparison is based on the assumption that trapped charge distribution is not dependent on the dose rate, type of radiation or irradiation history before deposition (i.e. before sunlight exposure of the sediment).
In the SAR procedure, a dose response curve is obtained by plotting the ratio of the OSL signal to the response to a test dose. If the OSL signal is derived from a single electron trap and recombination centre, then the form of the dose response curve would be a single saturating exponential (e.g. Bøtter-Jensen et al., 2003). Some such dose response curves have been reported (e.g. Wintle and Murray, 2006); however, many SAR dose response curves for OSL signals from fine grained quartz dominated by the fast component display continuing growth at high doses (e.g. Lowick et al., 2010, 2011; Kreutzer et al., 2012). This behaviour would, in theory, enable higher equivalent doses to be obtained. In practice however, few ages have been obtained by SAR-OSL dating that have been in agreement with independent age control beyond the Eemian. Using multiple grain SAR-OSL procedures, Buylaert et al. (2007) reported natural signals below the laboratory saturation level for a sample with an expected age of ~900 ka. To our knowledge, for quartz that displays a continuing growth at high doses, there are no reports in the literature of natural signals found in saturation.

Our previous studies using fine (4-11 μm) and coarse (63-90 μm) quartz extracted from Romanian loess have shown that natural OSL signals from infinitely old samples are significantly below the laboratory saturation level (Timar-Gabor et al., 2012). Also, it has been reported that ages derived from these two grain size fractions are mutually inconsistent for equivalent doses higher than about 100 Gy, in the case of quartz extracted from both the Lower Danube Basin and the Carpathian Basin (Timar-Gabor et al., 2011, Constantin et al., 2014, Constantin et al. in press, Timar-Gabor et al., in press). Moreover, our previous results derived from quartz extracted from Romanian loess indicate that the laboratory dose response curve does not accurately reflect the growth of the OSL signal in nature (Timar-Gabor and Wintle, 2013). The present work is directed at obtaining more insight into these observations, by performing additional continuous-wave OSL experiments, and by applying time resolved luminescence on quartz extracts; these experiments are designed (i) to test whether the observed luminescence growth is a characteristic of quartz rather than an artefact caused by feldspar contamination, and (ii) to determine whether luminescent recombination occurs at different centres at large doses.

2. Samples, instrumentation and measurement protocol

Experiments presented in the current study have been conducted on archived quartz separates (63-90 μm and 4-11 μm grains) from our previous investigations on Romanian loess. Samples coded as MV have been collected from Mircea Vodă section in Dobrudjea (Timar et al., 2010; Timar-Gabor et al., 2011). MST is the lab code attributed to Mostistea section from the Romanian Plain (Vasiliniuc et al., 2011; Timar-Gabor et al., 2012). CST samples were taken from Costinești section near the Black Sea shore (Timar-Gabor and Wintle, 2013; Constantin et al., 2014), while samples coded as LCA come from Lunca section in South Western Romania (Constantin et al., in press). More details on these samples are given in the supplementary material (Table S1). Continuous-wave optically stimulated luminescence (CW-OSL) measurements on quartz were made in the Cluj Luminescence Dating Laboratory with a Risø TL/OSL DA-20 reader equipped with blue light emitting diodes.
(LEDs) emitting at 470 ± 30 nm and IR LEDs emitting at 875 ± 80 nm; luminescence signals were observed through a 7.5 mm thick Hoya U-340 UV filter. Irradiations have been carried out using a ⁹⁰Sr-⁹⁰Y beta source, calibrated using fine and coarse quartz (e.g. Hansen et al., this issue). The dose rate (at the time of measurement) for coarse grains mounted on stainless steel discs was 0.147 Gy·s⁻¹ and 0.118 Gy·s⁻¹ for fine grains deposited on aluminium discs. Details of the TL/OSL reader can be found in Thomsen et al. (2006). The OSL signal was collected in time intervals of 0.154 s. All samples have been analysed using a SAR protocol (Murray and Wintle, 2000, 2003). The OSL signal used for analysis was that obtained for the first 0.308 s of the decay curve minus a background derived from the signal measured between 2.464 and 3.080 s, as had been used in previous studies on Romanian loess (Timar et al., 2010; Timar-Gabor et al., 2011; Timar-Gabor et al., 2012; Timar-Gabor and Wintle, 2013) following the recommendations of Cunningham and Wallinga (2010). All OSL signals analysed were characterised by a rapid decay and the shape of the decay curve is not dose dependent (Figure S1). Our previous studies showed that the shape of the linearly modulated OSL signal is not dependent on the age of the sample (Timar-Gabor et al., 2011- figure 4), nor on either the administered dose (Timar-Gabor et al., 2012- figure S1 and S4) or the thermal treatment previously applied (Timar-Gabor et al., 2011- figure 5). This provides evidence that the behaviour reported is characteristic of quartz OSL signals dominated by the fast component, as also reported by other studies (Lowick et al., 2010). Natural (L_n) and regenerated (L_x) signals were measured after a preheat of 10 s at 220°C; the corresponding responses (T_n and T_x) to a test dose (16 Gy) were measured after a cutheat to 180°C unless otherwise stated. The value of the test dose was kept constant through all measurements for both grain sizes of quartz. A high-temperature bleach was performed after each SAR cycle by stimulating with the blue diodes for 40 s at 280°C (Murray and Wintle, 2003).

Time resolved optically stimulated luminescence (TR-OSL) experiments were carried out at DTU Nutechon a Risø TL/OSL-20 (designated as Reader V) equipped with an integrated pulsing option to control the LEDs, and a Photon Timer attachment to record the TR-OSL (Lapp et al., 2009). All TR-OSL experiments have been carried out using the same measurement parameters as used in the CW-OSL measurements. For stimulating and recording the TR-OSL signals, the total measurement time was set to 100 s, with a pulse period of 500 μs consisting of an “on time” of 50 μs and an “off time” of 450 μs; this is equivalent to a net stimulation period of 10s in CW-OSL. A total of 500 data points was used for data collection in pulsed stimulation; the sample was not illuminated during the first and the last five channels. Measurement of dose response curves using pulsed OSL measurements was designed to reproduce the CW-OSL measurement conditions as closely as possible, and to minimise any possible feldspar contamination of the quartz, by: (i) selection of an on time of 50 μs (ii) gating the photomultiplier for counting only during the off period; (iii) ignoring the first 4μs during the off time in TR-OSL OSL data analysis (Ankjærgaard et al., 2010).

3. Laboratory dose response of quartz OSL

3.1. CW-OSL investigations
Previous studies on Romanian loess showed quartz saturation at large doses, especially in the case of fine grains. Here we compare the laboratory dose response of fine and coarse grains up to 5kGy. For fine grains, 15 aliquots (from different sections in Romania) are shown (Figure 1a) one aliquot of MV10 and CAC 2.1.; two aliquots of CST\textsubscript{inf}, MST 2, MST 6, MST 13, MST 19 and three aliquots of LCA15; it can be seen that the saturation characteristics are similar and all datasets can be well represented by a sum of two saturating exponential functions:

\[I(D) = I_0 + A(1 - \exp(-D/D_{01})) + B(1 - \exp(-D/D_{02})) \]

Any scatter in the data may be due to different origins of the loess as samples come from both SE and SW Romania. For coarse grains, 11 aliquots are shown (Figure 1b), one aliquot from samples CAC 2.1, CST\textsubscript{inf}, LCA 15 and two aliquots of samples MV8, MST3, MST 17, and MST 19. The scatter is greater than for the 16 samples taken down the section at Costineşti (Timar-Gabor and Wintle, 2013). This may be due to the higher dose range investigated (5000 Gy in the present study compared to 1000 Gy in the previous work) but may also suggest a continuity of source material at one site; in that case, Figs. 1a and 1b may show a variation in source material across southern Romania. Nevertheless, and despite the observed scatter, the saturation characteristics of all samples from a specific grain size are rather similar, but the average behaviour of the two grain sizes is markedly different.

The reproducibility of the dose response curve was also examined (Figure S2). For coarse grains from sample MV8, the dose response curve was taken up to 15 kGy. After constructing this first dose response, the sample was bleached, given a dose of 170 Gy and then the process repeated; the 2nd dose response agreed with the first. As expected, the sensitivity (T\textsubscript{x}/T\textsubscript{nat}) fluctuates, although the response to the constant test dose does not change by more than about 30% from the initial value.

Saturation characteristics of the dose response curves are not influenced by the thermal treatment used for either fine or coarse grains (Figure S3). The D\textsubscript{0} values for different thermal treatments are given in Table S2. The scatter in D\textsubscript{0} is probably affected by the restricted number of points used to construct the dose response and the maximum dose given; the latter is not high enough for the dose response to be fully saturated. Nevertheless, it is clear that the saturation characteristics of the fine and coarse grains remain significantly different when compared to each other no matter what thermal treatment is used. Contrary to the findings of Lai et al. (2008), heating the samples to 400°C produced only a trivial change in the shape of the laboratory dose response curve (Figure S4).

If fine grains are derived from the comminution of coarser grains, it is very likely that fine grains have experienced many more cycles of bleaching and irradiation than coarse grains. This process is known to sensitise coarse grains (Moska and Murray, 2006) and may change the shape of the dose response curve. To test this, nine aliquots of coarse grains from different samples were given multiple cycles of bleaching (100 s blue diodes at room temperature/ pause 10000s/100 s blue diodes at room temperature) and irradiation (beta dose). All aliquots
sensitized by 60% after 8 cycles of bleaching and irradiation (total dose of approximately 1000 Gy). However, there was no noticeable change in the dose response curve shape constructed using the aliquots that were subjected to this treatment compared to aliquots from the same sample on which the dose response curve had been constructed following the measurement of the natural, at least up to doses of 1000 Gy (Figure S5).

A fundamental difference that exists in nature between coarse and the fine grains is the past irradiation history, fine grains experience a significant alpha dose rate, in contrast to coarse grains. However, after repeated cycles of alpha irradiation with doses up 120 kGy (4.8 kGy effective alpha dose, assuming an “a value” of 0.04) prior to beta dose response construction, we were unable to detect any significant effect on the saturation characteristics of previously-etched quartz grains; thus, it is unlikely that alpha irradiation is causing surface defects that might have been responsible for the higher saturation characteristics of fine grains (Constantin et al., this issue).

3.2. TR-OSL investigations

In a previous study (Timar-Gabor et al., in press QI), time-resolved OSL (TR-OSL) measurements were made on fine and coarse grains from one sample of Serbian loess from Orlovat. The shape of the TR-OSL was typical of quartz (Chithambo, 2003; Denby et al., 2006; Thomsen et al., 2008). In addition, the similarity of the shapes with and without prior exposure to IR further confirmed that the OSL was derived from quartz and that no part of the signal was from feldspar. Dose response curves for both grain sizes were obtained using the TR-OSL signal and were found to be very similar to those using the initial part of the CW-OSL signal. The equivalent doses were also in agreement (TR-OSL 171±9 and 170±16 Gy for fine and coarse grains, respectively; the equivalent values for CW-OSL were 175±4 and 181±10 Gy). This study was repeated on fine and coarse grains from four samples of loess of different ages from Costinești and Lunca sections. The samples were preheated to 220 °C and stimulated at 125 °C. The IR treatments consisted of stimulation for 200 s at 125˚C. TR-OSL curves for fine and coarse grains given different doses, recorded both during “on and off times” are presented in Figures 2a and 2b, respectively. During the “off time”, the signals display a slow decay that can be fitted with a single exponential function.

The aliquots have been measured using a typical SAR protocol measurement sequence, with a test dose of 19 Gy, and the counts from the photomultiplier were gated to record only during the off period. Data were registered in 500 channels of 0.2 seconds, each channel consisting of 400 pulses of stimulation. Data collected from 1-4 seconds of signal registration were selected for integration, corresponding to a stimulation time interval of 0.32 seconds, a value very similar to that used in CW-OSL (0.308s). The dose response curves for TR-OSL (Figure 2c) follow the same pattern as those for CW-OSL, showing beyond reasonable doubt that the difference observed between coarse and fine grains is inherent in quartz OSL, and not due to some contaminant. The lifetimes were calculated for both natural and regenerated TR-OSL signals, as well as for signals obtained after IR exposure and for the recycling point in the dose response curve, and these are shown as a function of dose in Figure 2d. As in the previous study on ORL4 (Timar-Gabor et al., in press QI), the lifetimes for a
stimulation temperature of 125 °C are the same for both grain sizes and agree with the values of 36.5-38.5µs obtained by others (e.g. Chithambo, 2003; Ankjærgaard et al., 2010—figure 1) but there is no marked dependence of lifetime as function of given dose (c.f. Chithambo et al., 2008). These results indicate that the same recombination pathways are used to produce OSL in both fine and coarse grained quartz and these pathways are independent of dose. They also suggest that the second saturation exponential term observed in the dose response curve is not an effect of the existence of multiple recombination centres emitting within our detection window.

4. Natural dose response

Following the approach of Chapot et al. (2012), we have calculated the average sensitivity-corrected natural signals down the section at Costineşti and plotted them as a function of the expected equivalent dose. The latter were calculated using the measured dose rate and the expected ages derived from a model based on changes in magnetic susceptibility down section (Constantin et al., 2014). A relative error of 10% was assigned to the paleomagnetic ages. Fine and coarse grains from 25 samples of loess from Costineşti with expected doses up to 500 Gy were used (Timar-Gabor and Wintle, 2013). These results are shown in Figures 3a and 3b, together with the value for “an infinitely old sample” (Timar-Gabor et al., 2012), with expected doses of between 2000 and 2500 Gy, depending on grain size. The natural dose response of the infinitely old sample is about 60% of the laboratory saturation level for fine grains and 80% of the laboratory saturation level in the case of coarse grains. These results provide further evidence that natural signals from infinitely old samples from this region do not fall on the laboratory dose response curves. By comparing Figures 3a and 3b, it is seen that the differences between the natural and laboratory dose response curves are more pronounced in the case of fine grains. Based on the dose response curves presented, the natural response seems to overestimate the laboratory response in the 100-400 Gy region, while for higher doses, as in the case of fine grains, the natural signals show earlier saturation.

5. Other dose response curves

5.1. Multiple-aliquot additive-dose with 110 °C TL correction

A new multiple-aliquot additive-dose (MAAD) procedure was applied, in which the OSL responses of all aliquots were normalised using the 110 °C TL peak measured in response to a test dose given before any other laboratory treatment, such as irradiation or preheating. Murray and Wintle (2000) pointed out that a subsequent test dose (as used in the standard for of SAR) did not monitor sensitivity change occurring during measurement of the natural OSL signal; they further showed that a prior 110°C TL measurement could be used for this purpose, if the changes in the sensitivity of the two signals were directly proportional, and Singhvi et al. (2011) later tested this suggestion. In our MAAD procedure, we used 96 aliquots of fine grains from CST 3, which had an equivalent dose of 105 ± 3 Gy as derived using the standard SAR protocol. Immediately following delivery
of a 4 Gy test dose, the 110 °C TL peak was measured by heating to 180 °C. Subsequently the aliquots were
divided into 12 groups of 8 aliquots and irradiated with doses ranging from 10 to 2580 Gy. Following a preheat
for 10 s at 220 °C, the OSL was measured at 125 °C for 40 s, and this signal was normalised using the
previously measured 110 °C TL response.

The MAAD dose response curve is given in Figure 4 and the equivalent dose (103±20 Gy) obtained by
extrapolation of a single saturating exponential function (which was found to be the best fit for the presented
dataset) is indistinguishable from the SAR result (105±3 Gy). The scatter observed for each dose point is
intriguing, possible suggesting that individual aliquots have either a range of TL responses to the initial 4 Gy
dose or different OSL responses to added dose. Either explanation is surprising, because fine grains are
expected to have a homogenous response because of the large number of grains on each disc. Due to this high
degree of scatter, a quantitative assessment based on fitting parameters of saturation characteristics cannot be
performed with confidence. However, it is important to note that the MAAD dose response is not fully saturated
for doses over 2000 Gy and thus grows to higher doses than the natural dose response, which is fully saturated
at doses about 500-1000 Gy (Figure 3).

5.2. The effect of adding a large dose on top of natural signals

In an earlier study, Timar-Gabor and Wintle (2013) added 1816 Gy on top of the natural dose for fine grains
from sample CST 6 (D_e = 197 ± 7 Gy) and 1676 Gy for coarse grains from another sample, CST 1 (D_e = 116 ±
8 Gy). The light levels obtained were compared with those reached by the laboratory dose response curve
constructed using the SAR procedure using doses up to 2300 Gy. For the coarse grains, the signal seemed to be
in saturation, while for fine grains the signal appeared to be below the maximum value obtained in the
laboratory. However, the dose response curves did not show complete saturation. In our study, we have given
additional doses of 8000 Gy to the fine grains and 5000 Gy to the coarse grains for the same sample, MST 7.
Laboratory dose response curves were then constructed using doses up to 10000 Gy. For both grain sizes,
signals from aliquots given added doses are below the saturation levels of the laboratory dose responses; this
difference is greatest for fine grains (Figure 5). It seems likely that quartz cannot be used to accurately measure
a known given dose at high doses (see Figure S6 and Table S3 - fine grains and Figure S7 and Table S4 -
coarse grains for further information), and that signal instability is not likely to be the cause of underestimation
of the natural signal relative to the saturation level in the infinitely old sample. In contrast, these results strongly
suggest that, at large doses, sensitivity changes in the first measurement cycle are not adequately corrected for
using the response to a test dose given either before or after measurement of the signal of interest. They also
demonstrate the need to construct laboratory dose response curves up to full saturation before pertinent
conclusions regarding the saturation parameters can be drawn.

6. Summary and Conclusions
SAR measurement sequences carried out on fine (4-11 μm) and coarse (63-90 μm) grained quartz extracts from loess deposits at four sites in the south of Romania have confirmed previously published work that shows the SAR laboratory dose response curves obtained for the two grain sizes to be quite different. For both grain sizes, the sum of two exponential functions is required to fit the data, characterised by D_{01} and D_{02} values of ~140 and ~1400 Gy for fine grains and ~65 and ~650 Gy in the case of coarse grains, respectively, when doses up to 5000 Gy are given (Figure 1). Only when the laboratory dose was extended up to 9 kGy is the fine-grain signal seen to be in full saturation. Laboratory saturation characteristics are not affected by previous irradiation, bleaching, or the thermal treatments employed.

For doses higher than about 200 Gy natural and laboratory dose response curves for fine grains diverge (Figure 3a), with natural signals showing earlier saturation. Based on the divergence shown for these samples from Costineşti, it is tempting to suggest that an upper limit of 2 D_{01} could be applied to values of D_c determined using SAR, as suggested by Wintle and Murray (2006) for single exponential growth. For these samples, Timar-Gabor and Wintle (2013, Figure 2c) obtained a value of D_{01} = 76 Gy when they fitted a double exponential to the average dose response curve for all samples from this section constructed using doses up to 1200 Gy. However, as shown in Figure 1a, D_{01} ranges between 131 ± 20 and 200 ± 24 Gy when doses up to 5000 Gy were used to construct the dose response curve; for CST_{inf}, the value was 144 ± 19 Gy. It is thus not possible to provide firm numerical guidance on the maximum value of D_c that can be determined reliably. In addition, the comparison is constrained by the uncertainty in the D_c predicted down section based on the dose rate and age from the palaeomagnetic model, though likely error bars are given in Figure 1a. For 63-90 μm quartz, it is difficult to assess the degree of overlap of the natural and laboratory dose response due to the scatter of the datapoints (Figure 3b).

The multiple-aliquot additive dose response curve (Figure 4) seems to grow to higher doses than the natural dose response; while there is agreement between the values obtained by SAR and MAAD for equivalent doses ~100 Gy, the signals measured after adding a dose of the magnitude of the SAR saturation level (5000 Gy for coarse grains; 8000 Gy for fine grains) on top of the natural dose were found to be significantly below the saturation level (Figure 5). This suggests an initial dose-dependent sensitivity change that is not corrected for by the use of the response to a test dose, whether given before or after the signal of interest.

In conclusion, several lines of investigation, such as signal contamination and the effects of prior dose and thermal treatments, were unable to identify the cause of either the differences between quartz fine-grained and coarse-grained dose response curves, or the age under-estimation at high doses. Although our previous studies have shown that acceptable recovered-to-given dose ratios could be obtained up to ~500 Gy (Timar-Gabor et al., 2011, Timar-Gabor et al., 2012, supplementary material) or even ~1500 Gy (Constantin et al., 2014) when
doses are given after a laboratory bleach, our present study suggests that age underestimation may, in part, be
caused by poor dose recovery at very high doses.
Further investigations in this high dose range are clearly needed and it is recommended that adding a large dose
on top of the natural and comparing the measured signal to the laboratory saturation limit should be
incorporated as a standard test for evaluating the performance of the SAR protocol, especially when
applications are carried out in the high dose range.

Acknowledgements
A.T-G. and D.C. acknowledge the financial support from a grant of the Romanian National Authority for
Scientific Research CNCS-UEFISCDI, PN-II-RU-TE-2011-3-0062, nr. 73/05.10.2011. D.C. also acknowledges
the financial support of the Sectorial Operational Programme for Human Resources Development 2007-2013,
co-financed by the European Social Fund under the project POSDRU/159/1.5/S/133391-“Doctoral and
postdoctoral excellence programs for training highly qualified human resources for research in the fields of Life
Sciences, Environment and Earth”.

References
1. Ankjærgaard, C., Jain, M., Thomsen K.J., Murray A.S., 2010. Optimising the separation of quartz and
feldspar optically stimulated luminescence using pulsed excitation. Radiation Measurements 45, 778-785.
Luminescence dating of old (>70ka) Chinese loess: a comparison of single-aliquot OSL and IRSL
techniques. Quaternary Geochronology 2, 9-14.
generated dose response curves for quartz optically stimulated luminescence signals from Chinese Loess.
Radiation Measurements 47, 1045-1052.
5. Chithambo, M. L., 2003. Dependence of the thermal influence on luminescence lifetimes from quartz on the
duration of optical stimulation. Radiation Measurements 37, 167-175.
lifetimes on additive irradiation on natural sedimentary quartz: sands from Santa Elina, Brazil. Physica Status
Solidi (c) 2, 630-633.
resolution OSL dating of the Costineşti section (Dobrega, SE Romania) using fine and coarse quartz.
Quaternary International 334-335, 20-29.

28. Timar-Gabor, A., Constantin, D., Marković, S. B., Jain, M., in press. Extending the area of investigation of fine versus coarse quartz optical ages from the Lower Danube to the Carpathian Basin. Quaternary International

Figure captions

Figure 1: Laboratory dose response of (a) 15 aliquots of fine grained (4-11 µm) quartz and (b) 11 aliquots of coarse grained (63-90 µm) quartz. For fine grains, the individual values for D_{01} range between $131 \pm 20 \text{ Gy}$ and $200 \pm 24 \text{ Gy}$, while the D_{02} values are between $1252 \pm 119 \text{ Gy}$ and $1917 \pm 280 \text{ Gy}$. In the case of coarse grain, values for D_{01} range between $30 \pm 3\text{ Gy}$ and $68 \pm 6\text{ Gy}$ while the minimum and maximum values for D_{02} are $317 \pm 26 \text{ Gy}$ and $705 \pm 120\text{ Gy}$. The average dose response curve for each grain size is represented as a solid line.

Figure 2: TR-OSL signals (photon arrival time distributions-PAT) for one representative aliquot of (a) fine and (b) coarse grains of sample CST 3 recorded after different doses. (c) Dose response curves for fine (4-11 µm) grains and coarse (63-90 µm) grains of sample CST 3 constructed using TR-OSL. (d) Average lifetimes obtained as function of dose. The lifetimes of natural signals are depicted as stars. The IR stimulation was performed in a pseudo-CW stimulation manner (on time 500 µs; off time 4.5 µs) for 100 s at 125 °C. Each datapoint represents the average value obtained on 10 aliquots.
Figure 3: The average sensitivity-corrected natural signal for 26 samples from Costinești (a) fine and (b) coarse grains plotted as function of their expected equivalent dose. The average laboratory dose response curve (based on data taken up to 5000 Gy) is displayed for each grain size.

Figure 4: Multiple aliquot additive dose response curve obtained using 110 °C TL peak for normalisation.

Figure 5: Normalised luminescence signals for sample MST 7 (De = 149 ± 3 Gy - fine grains; De = 191 ± 17 Gy - coarse grains); following irradiation to a dose of (a) 8000 Gy for fine grains and (b) 5120 Gy for coarse grains given on top of the natural dose.
Figure 4

![Graph showing the relationship between dose and luminescence.]

CST 3 4-11 μm
De (MAAD) = 103± 20 Gy

Normalized Luminescence

Dose on top of natural (Gy)
Figure 5

(a) MST 7
4-11 μm

Corrected luminescence (L_X/T_X)

$D_{01} = 217 \pm 19 \text{ Gy}$
$D_{02} = 1712 \pm 123 \text{ Gy}$

Given dose (Gy)

(b) MST 7
63-90 μm

Corrected luminescence (L_X/T_X)

$D_{01} = 61 \pm 8 \text{ Gy}$
$D_{02} = 583 \pm 55 \text{ Gy}$

Given dose (Gy)
SUPPLEMENTARY - Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range

Table S1: Additional information on investigated samples:

<table>
<thead>
<tr>
<th>Sample code</th>
<th>De 4-11 µm quartz (Gy)</th>
<th>De 63-90 µm quartz (Gy)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV 2</td>
<td>32 ± 1</td>
<td>46 ± 4</td>
<td>Timar-Gabor et al. 2011</td>
</tr>
<tr>
<td>MV 8</td>
<td>209 ± 3</td>
<td>247 ± 8</td>
<td>Timar-Gabor et al. 2011</td>
</tr>
<tr>
<td>MV 10</td>
<td>310 ± 9</td>
<td>319 ± 15</td>
<td>Timar-Gabor et al. 2011</td>
</tr>
<tr>
<td>CAC 2.1</td>
<td>126 ± 4</td>
<td>119 ± 9</td>
<td>Constantin et al. 2012</td>
</tr>
<tr>
<td>MST 2</td>
<td>113 ± 2</td>
<td>130 ± 10</td>
<td>Vasiliniuc et al., 2011; Timar-Gabor et al. 2012</td>
</tr>
<tr>
<td>MST 3</td>
<td>151 ± 4</td>
<td>153 ± 4</td>
<td>Vasiliniuc et al., 2011; Timar-Gabor et al. 2012</td>
</tr>
<tr>
<td>MST 6</td>
<td>147 ± 2</td>
<td>185 ± 9</td>
<td>Vasiliniuc et al., 2011; Timar-Gabor et al. 2012</td>
</tr>
<tr>
<td>MST 7</td>
<td>149 ± 3</td>
<td>191 ± 17</td>
<td>Vasiliniuc et al., 2011; Timar-Gabor et al. 2012</td>
</tr>
<tr>
<td>MST 13</td>
<td>195 ± 2</td>
<td>277 ± 15</td>
<td>Vasiliniuc et al., 2011; Timar-Gabor et al. 2012</td>
</tr>
<tr>
<td>MST 17</td>
<td>264 ± 9</td>
<td>279 ± 28</td>
<td>Vasiliniuc et al., 2011; Timar-Gabor et al. 2012</td>
</tr>
<tr>
<td>MST 19</td>
<td>289 ± 9</td>
<td>288 ± 57</td>
<td>Vasiliniuc et al., 2011; Timar-Gabor et al. 2012</td>
</tr>
<tr>
<td>LCA 15</td>
<td>113 ± 2</td>
<td>117 ± 5</td>
<td>Constantin et al. in press</td>
</tr>
<tr>
<td>CST 1→CST 25</td>
<td>90 ± 1→409 ± 12</td>
<td>116 ± 8→470 ± 38</td>
<td>Constantin et al. 2014, Timar-Gabor and Wintle 2013</td>
</tr>
<tr>
<td>Cst inf.</td>
<td>650 ± 20</td>
<td>628 ± 47</td>
<td>Timar-Gabor et al. 2012</td>
</tr>
</tbody>
</table>

Figure S1: CW-OSL decay curves as a function of dose compared to the calibration quartz (4.81 Gy) OSL decay curve. The data are normalized to the number of counts in the first channel (first 0.15 s of the stimulation time).
SUPPLEMENTARY - Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range

Figure S2: Dose response curve reproducibility test for a coarse quartz aliquot of sample MV8 (see text for experimental details). The first growth is represented by circles while the second growth is represented by stars. Repeat points for the first and second dose responses are represented by up and down triangles respectively. The inset shows the change in sensitivity monitored by the response to the test dose.

Figure S3: Dose response curves constructed up to 2000 Gy using different combinations of preheat/cutheat treatments, for a sample of fine quartz. Fitting parameters in the case of this particular sample, as well as the coarse quartz counterpart material, are given in the table below.
Table S2: Fitting parameters for OSL dose response curves constructed up to 2000 Gy for different thermal treatments. Please note that fitting parameters should be regarded as an indication of a specific trend rather than a quantitative measure, due to the restricted number of points used and dose range investigated.

<table>
<thead>
<tr>
<th>Sample</th>
<th>4 – 11 μmMST 2</th>
<th>63-90 μmMST 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y₀</td>
<td>y₀ error</td>
</tr>
<tr>
<td>Ph 220 cth 180</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>Ph 220 cth 180</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>Ph 220 cth 220</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Ph 220 cth 220</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Ph 260 cth 260</td>
<td>0.02</td>
<td>0.13</td>
</tr>
<tr>
<td>Ph 260 cth 260</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>Ph 280 cth 280</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Ph 280 cth 280</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Note: Reduced χ² values are indicated for goodness of fit.
Figure S4: Dose response curves for fine and coarse quartz grains constructed before and after heating the sample to 400 °C.
Figure S5: (a) Variations in OSL sensitivity as a function of bleach/dose cycle obtained using nine coarse quartz aliquots of samples collected from Mircea Voda, Costinesti and Mostistea. The samples were first optically zeroed using a double blue stimulation at room temperature for 100 s with 10 ks pause in between. The aliquots were then given a 170 Gy dose and the OSL signal was measured using a blue stimulation at 125 °C for 40s. This was repeated for five times in order to accumulate a dose of ~ 1000 Gy after bleaching. A dose-response curve was then built using seven regenerative doses up to ~ 1050 Gy. The data represent the net OSL signals obtained in each cycle normalized to the OSL signal from the first cycle. (b) (a) Comparison between the saturation characteristics (D_{01}, D_{02}) obtained for dose-response curves constructed after multiple bleach/dose cycles (open stars) and the values obtained for dose-response curves constructed for D_e measurement, on different aliquots. It can be noted that there is a difference between the individual values (which is to be expected, due to the fact that different aliquots of coarse grains are investigated ; i.e. see scatter in fig 1.b), but remain consistent within error limits.
SUPPLEMENTARY - Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range

Figure S6: Normalised luminescence signal for sample MST 7 4-11 µm quartz, with an equivalent dose of 149 Gy following irradiation with a dose of 2000 Gy.

Table S3: Further results of adding a laboratory dose on top of natural doses for fine quartz grains of samples MST7, MST11 and MST 17.

<table>
<thead>
<tr>
<th>Sample MST 7 4-11 µm De=149±3 Gy</th>
<th>Given dose (Gy)</th>
<th>MEASURED DOSE</th>
<th>Nr of aliq</th>
<th>Measured/Given dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>“NATURAL”</td>
<td>149 ± 3 Gy</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NAT + 99 Gy=248Gy</td>
<td>236 ± 3 Gy</td>
<td>2</td>
<td>0.95±0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>237 ± 3 Gy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT + 198 Gy=347Gy</td>
<td>348 ± 5 Gy</td>
<td>2</td>
<td>0.99±0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>337 ± 5 Gy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT + 397 Gy=546Gy</td>
<td>491 ± 8 Gy</td>
<td>2</td>
<td>0.89±0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>485 ± 10 Gy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT + 595 Gy=744Gy</td>
<td>699 ± 16 Gy</td>
<td>2</td>
<td>0.95±0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>718 ± 15 Gy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT + 977 Gy=1126 Gy</td>
<td>1088 ± 25 Gy</td>
<td>3</td>
<td>0.96±0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1028 ± 17 Gy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>149 ± 3 Gy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT + 2000 Gy=2149 Gy</td>
<td>1373±24 Gy</td>
<td>1</td>
<td>0.64±0.01</td>
<td></td>
</tr>
<tr>
<td>NAT + 4508 Gy=4657 Gy</td>
<td>1989±50 Gy</td>
<td>1</td>
<td>0.43±0.01</td>
<td></td>
</tr>
<tr>
<td>NAT + 7938 Gy=8087 Gy</td>
<td>2930±83 Gy</td>
<td>1</td>
<td>0.36±0.01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample MST 11 µm De=173±4 Gy</th>
<th>Given dose (Gy)</th>
<th>MEASURED DOSE</th>
<th>Nr of aliq</th>
<th>Measured/Given dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>“NATURAL”</td>
<td>173 Gy</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NAT + 175 Gy=348 Gy</td>
<td>341 ± 11 Gy</td>
<td>3</td>
<td>0.98 ± 0.04</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample MST 17 µm De=264±9 Gy</th>
<th>Given dose (Gy)</th>
<th>MEASURED DOSE</th>
<th>Nr of aliq</th>
<th>Measured/Given dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>“NATURAL”</td>
<td>264 ± 9 Gy</td>
<td>7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NAT + 705 Gy=969 Gy</td>
<td>924 ± 51 Gy</td>
<td>1</td>
<td>0.95 ± 0.06</td>
<td></td>
</tr>
</tbody>
</table>
SUPPLEMENTARY - Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range

Figure S7: Normalised luminescence signal for sample MST 7 63-90 µm quartz, with an equivalent dose of 170 Gy following irradiation with a dose of 2000 Gy.

Table S4: Further results of adding a laboratory dose on top of natural doses for coarse quartz grains of sample MST7.

<table>
<thead>
<tr>
<th>Given dose (Gy)</th>
<th>MEASURED DOSE</th>
<th>Nr of aliq</th>
<th>Measured/ Given dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>“NATURAL”</td>
<td>170 ± 8 Gy</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>NAT + 5000 Gy</td>
<td>1121 Gy</td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>NAT + 2000 Gy</td>
<td>1197 Gy</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>NAT + 800 Gy</td>
<td>830 Gy</td>
<td>1</td>
<td>0.86</td>
</tr>
<tr>
<td>NAT +200 Gy</td>
<td>330 Gy</td>
<td>1</td>
<td>0.89</td>
</tr>
<tr>
<td>NAT +104 Gy</td>
<td>258 ± 12 Gy</td>
<td>5</td>
<td>0.94±0.06</td>
</tr>
</tbody>
</table>