Spacecraft Fire Safety

Urban, David L.; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Spacecraft Fire Safety

International Topical Team Formed

Spacecraft Fire Safety is a project run by scientists from NASA and ESA, plus a group of international scientists (pictures below), that aims to revolutionize spacecraft fire safety designs for next-generation space vehicles and habitats. It will feature a validation experiment on an unmanned but pressurized vehicle such as the ESA Automated Transfer Vehicle (ATV) after it has completed its supply mission to the International Space Station.

Problem Identification

Full scale fire testing complemented by computer modeling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a material flammability experiment of a relevant size and duration in microgravity. Therefore, there is currently a gap in knowledge of fire behavior in space.

Overpressure Testing and Modeling

The experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage.

Ground Experiments

Microgravity Sciences Glove (MSG) Box tests conducted.

Validation Experiment

It is important to emphasize that the experiments on the identified vessel will be validation experiments, not data mining experiments. As such, the other experiments will guide the design. Further, the sensor density should be very high to support modeling efforts.

Parabolic Flight Experiments

Team members have significant experience with parabolic flights and more experiments will be conducted.

ISS Experiments

Microgravity Sciences Glove (MSG) Box tests conducted.

The Road Ahead

Develop and demonstrate next-generation fire safety instrumentation and predictive tools to guide future spacecraft designers and crew members.

Drop Tower Experiments

The first step is to provide an appropriate tool that will integrate fire safety into design and management of space vehicles. Such a tool will integrate a wide range of design issues including, but not limited to, material selection, emergency response, crew training, post-fire cleanup, fire detection, fire suppression, environmental control and life support (ECLS) system design, and even atmosphere selection to provide a globally optimized solution.

Contact Grunde Jomaas (grujo@byg.dtu.dk) for more information or to express interest in participation.