Low-dose effects of bisphenol A on mammary gland development in rats

Egebjerg, Karen Mandrup; Boberg, Julie; Isling, Louise Krag; Christiansen, Sofie; Hass, Ulla

Published in:
International Journal of Andrology

Link to article, DOI:
10.1111/andr.12193

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Low-dose effects of bisphenol A on mammary gland development in rats

K. Mandrup, J. Boberg, L. K. Isling, S. Christiansen and U. Hass
Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark

SUMMARY
Bisphenol A (BPA) is widely used in food contact materials, toys, and other products. Several studies have indicated that effects observed at doses near human exposure levels may not be observed at higher doses. Many studies have shown effects on mammary glands at low doses of BPA, however, because of small number of animals or few doses investigated these data have not been used by EFSA as point of departure for the newly assessed tolerable daily intake (TDI). We performed a study with perinatal exposure to BPA (0, 0.025, 0.25, 5, and 50 mg/kg bw/day) in rats (n = 22 mated/group). One of the aims was to perform a study robust enough to contribute to the risk assessment of BPA and to elucidate possible biphasic dose–response relationships. We investigated mammary gland effects in the offspring at 22, 100, and 400 days of age. Male offspring showed increased mammary outgrowth on pup day (PD) 22 at 0.025 mg/kg BPA, indicating an increased mammary development at this low dose only. Increased prevalence of intraductal hyperplasia was observed in BPA females exposed to 0.25 mg/kg at PD 400, but not at PD 100, and not at higher or lower doses. The present findings support data from the published literature showing that perinatal exposure to BPA can induce increased mammary growth and proliferative lesions in rodents. Our results indicate that low-dose exposure to BPA can affect mammary gland development in male and female rats, although higher doses show a different pattern of effects. The observed intraductal hyperplasia in female rats could be associated with an increased risk for developing hyperplastic lesions, which are parallels to early signs of breast neoplasia in women. Collectively, current knowledge on effects of BPA on mammary gland at low doses indicates that highly exposed humans may not be sufficiently protected.

INTRODUCTION
The European Food Safety Authority (EFSA) concluded in an opinion on bisphenol A (BPA) in January 2015 that the substance is ‘likely’ to induce proliferative changes in mammary glands, based on a weight-of-evidence approach (EFSA 2015). However, EFSA evaluated that most of the studies on mammary gland effects of BPA include too few doses or are in other ways not robust and they could therefore not be used for deriving a tolerable daily intake (TDI) for BPA.

Quite a few rodent studies have been performed on mammary gland effects of pre- or perinatal exposure of BPA showing proliferative lesions in the glands (Table 1). Although most of the studies include few animals or only one or two BPA doses, several studies showed effects at BPA levels around 0.025–0.25 mg/kg bw/day. In general, effects were found in the lowest doses investigated, but not at higher doses. Although non-monotonic dose–response relationships are accepted in some scientific fields today, it is still a controversial subject in other scientific areas (Myers et al., 2009; Vandenberg et al., 2012, 2013a). The evidence on low-dose effects of BPA was further challenged by the results of a large study by Delclos et al. (2014) where significant mammary effects were only reported in the highest doses investigated, and according to the authors, not at lower doses around 0.025–0.25 mg/kg. As endpoints showing low-dose effects in previous BPA studies (i.e. intraductal hyperplasia and epithelial proliferation) were not evaluated in adult offspring in the Delclos study, it was considered necessary to conduct this study on these (and other) endpoints in a large-
scale study. This study aimed to strengthen the overall weight of evidence regarding possible non-monotonic effects of perinatal low-dose BPA exposure on rodent mammary glands.

Proliferative effects of BPA were seen in several studies: intraductal hyperplasia, epithelial proliferation, and development of more complex structures of the glands. The effects were mainly found in adult female offspring, but in three studies proliferative changes were also observed in prepubertal mammary glands (Muñoz-de-Toro et al., 2005; Delclos et al., 2014; Kass et al., 2015) and in male mammary glands (Vandenberg et al., 2013b; Kass et al., 2015). Thus, the presently available data point to proliferative effects of BPA in both female and male mammary glands of offspring exposed perinatally and the changes may be observable at different time points.

Bisphenol A is known to act via estrogenic and anti-androgenic modes of action and has been shown to act via several other toxicological modes of action (Bonefeld-Jørgensen et al., 2007; Vandenberg et al., 2009; Zhang et al., 2011), but it is not the scope of this manuscript to describe this in detail. The mammary gland effects of BPA correspond to effects observed by other estrogenic compounds, as for example, enhanced mammary development prepubertally in female offspring has been shown for several estrogenic compounds such as diethylstilbestrol, 17β-estradiol, and genistein (Cotroneo et al., 2002; Hovey et al., 2005; Thomsen et al., 2006). However, estrogenic compounds can affect the glands in different ways other than the ones described above. Enhanced lobular development has been described previously for female rats exposed to estrogenic compounds such as ethinyl estradiol and genistein (Murrill et al., 1996; Takagi et al., 2004) and in our previous study on perinatal exposure to phytoestrogens, a trend to an increased prevalence of lobuloalveolar pattern of the adult female mammary glands was observed (Boberg et al., 2013). Moreover, enhanced mammary development and morphological changes such as hypertrophy have been reported in males exposed to estrogenic compounds (Mandrup et al., 2012; Boberg et al., 2013). Thus, such changes may also be relevant to investigate in mammary glands of offspring exposed to BPA.

The aim of this study was to supplement the existing data available on mammary gland effects of BPA, to better establish whether there are low-dose effects of BPA on mammary glands and to better understand the dose–response relationships of BPA on mammary glands. To do this, we applied perinatal exposure of a sufficient number of rats to doses in the low-dose range (μg/kg bw), where mammary changes have been reported by others, as well as dose levels of BPA covering regulatory NOAELs (mg/kg bw). The investigated endpoints included early mammary gland development and different morphological changes in mammary glands of young adult or aging male and female offspring exposed in the perinatal period. Proliferative changes of pituitary glands were evaluated in the 1-year-old rats as previous studies have shown that prolactinomas of the pituitary glands of

Table 1 Proliferative changes of mammary glands observed in rodent studies with prenatal or perinatal exposure to bisphenol A

<table>
<thead>
<tr>
<th>Paper</th>
<th>Doses in mg/kg</th>
<th>Exposure period</th>
<th>Exposure route</th>
<th>Strain, species</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markey et al. (2001)</td>
<td>0.025, 0.25</td>
<td>Prenatal</td>
<td>Osmotic pump</td>
<td>CD-1 mice</td>
<td>Increased ductal & alveolar structures, 6 months (♀)</td>
</tr>
<tr>
<td>Markey et al. (2003)</td>
<td>0.0000025, 0.25</td>
<td>Prenatal</td>
<td>Osmotic pump</td>
<td>CD-1 mice</td>
<td>Increased lobular structures at 6 months (♀)</td>
</tr>
<tr>
<td>Muñoz-de-Toro et al.</td>
<td>0.0000025a, 0.00025b</td>
<td>Perinatal</td>
<td>Osmotic pump</td>
<td>CD-1 mice</td>
<td>Increased number of lateral branchesa and number of TEBs/mammary gland areaa (p = 0.054 at 0.0000025 mg/kg) PND 30 (♀)</td>
</tr>
<tr>
<td>Durando et al. (2007)</td>
<td>0.025</td>
<td>Prenatal</td>
<td>Osmotic pump</td>
<td>CD-1 mice</td>
<td>Increased number of alveolar buds, 3 months (♀)</td>
</tr>
<tr>
<td>Murray et al. (2007)</td>
<td>0.0025, 0.025, 0.25</td>
<td>Prenatal</td>
<td>Osmotic pump</td>
<td>Wistar rats</td>
<td>Intraductal hyperplasia PND 110 and 180 (♀)</td>
</tr>
<tr>
<td>Vandenberg et al. (2008)</td>
<td>0.000025, 0.0025</td>
<td>Perinatal</td>
<td>Osmotic pump</td>
<td>CD-1 mice</td>
<td>Increased number of alveolar buds, 3 months (♀)</td>
</tr>
<tr>
<td>Betancourt et al. (2010)</td>
<td>0.25</td>
<td>Prenatal</td>
<td>Gavage</td>
<td>SD rats</td>
<td>Proliferation of epithelial cells PND 100 (♀)</td>
</tr>
<tr>
<td>Durando et al. (2011)</td>
<td>0.25, 0.25</td>
<td>Prenatal</td>
<td>Osmotic pump</td>
<td>Wistar rats</td>
<td>Intraductal hyperplasia PND 110 but not PND 50 (♀)</td>
</tr>
<tr>
<td>Acevedo et al. (2013)</td>
<td>0.00025, 0.0025, 0.025, 0.25</td>
<td>Perinatal or perinatal</td>
<td>Osmotic pump</td>
<td>SD rats</td>
<td>Adenocarcinomas observed PND 90, 140 and 200 (five animals in total in different BPA exposure groups)</td>
</tr>
<tr>
<td>Vandenberg et al. (2013b)</td>
<td>0.000025, 0.0025, 0.025</td>
<td>Perinatal</td>
<td>Osmotic pump</td>
<td>CD-1 mice</td>
<td>Increased ductal area at 3–4 monthsb, Increased branching points at 3–4 monthsb, Proliferation of epithelial cells at 8 monthsb (two lowest doses not investigated) (♂)</td>
</tr>
<tr>
<td>Delclos et al. (2014)</td>
<td>0.0025, 0.008, 0.025, 0.08, 0.26, 0.84, 2.7, 100, 300</td>
<td>Perinatal and postnatal</td>
<td>Gavage</td>
<td>SD rats</td>
<td>Increased ductal structures PND 21a and 90b (♀) Branching and budding</td>
</tr>
<tr>
<td>DTU evaluation of Delclos et al. (2014)</td>
<td>0.0025, 0.008, 0.025, 0.08, 0.26, 0.84, 2.7, 100, 300</td>
<td>Perinatal and postnatal</td>
<td>Gavage</td>
<td>SD rats</td>
<td>Evaluation of increased ductal structures PND 90 (with Fisher’s exact test for incidence of mild ductal hyperplasia compared to naive and vehicle controls) (♀)</td>
</tr>
<tr>
<td>Kass et al. (2015)</td>
<td>A: 0.025, 0.25</td>
<td>Prenatal</td>
<td>Osmotic pump</td>
<td>Wistar rats</td>
<td>Increased outgrowth PND 5 (♂, A)</td>
</tr>
<tr>
<td>This study</td>
<td>0.025b, 0.25, 0.25c</td>
<td>Perinatal</td>
<td>Gavage</td>
<td>Wistar rats</td>
<td>*Intraductal hyperplasia PD 400 (♀), *increased outgrowth PD22 (♂)</td>
</tr>
</tbody>
</table>

Doses in bold are doses where statistically significant changes were observed for the effects listed in the column to the right. PND, postnatal day; TEBs, terminal end buds; TDs, terminal ducts. *Refer to specific effects explained in the column to the right. © National Food Institute DTU (2015).
elderly female rats may influence morphological changes in the mammary glands (Trouillas et al., 1982).

Other endpoints were also evaluated in this study and results on reproductive parameters and prepubertal data on offspring are published in Christiansen et al. (2014) and data on adult reproductive organs and behavioral effects are published in Hass et al. (submitted to the current issue of Andrology).

MATERIALS AND METHODS

Chemicals

Bisphenol A (purity ≥ 99% pure, CAS no. 80-05-7, no. 239658) was purchased from Sigma-Aldrich. Corn oil in glass bottles (no. C8267) also purchased from Sigma-Aldrich was used as vehicle and negative control. The dosing solutions were stirred continuously, kept in glass bottles in the dark at room temperature and verified by chemical analysis (reported in Christiansen et al., 2014).

Animals

A total of 110 time-mated female Wistar rats (HanTac : WH, SPF from Taconic Europe, Ejby, Denmark) with a body weight of 200 ± 20 g arrived on gestation day (GD) 3 and on GD 4. The dams were distributed to five groups (n = 22 per group) with similar weight distributions in all groups. The animals arrived in three blocks with 1 week separating each block. The dose groups were equally represented in the different blocks. Dams were housed in pairs until GD 17. From this day and on dams were housed alone. After weaning, offspring were housed in pairs. Dams were housed in polysulfone cages (PSU 80-129HOOSU Type III; Techniplast, Buguggiate, Italy, 15 × 27 × 43 cm) with Aspen wood chip bedding (Tapvei, Gentofte, Denmark) and Enviro Dri nesting material (Brogaard, Lyng, Denmark) and wooden shelters (Tapvei Arcade 17, Aspen wood; Brogaard). Animals had access to acidified tap water in BPA-free polysulfone water bottles (84-ACBT0702SU) and soy- and alfalfa free diet (Altromin 1314, Altromin GmbH, Lage, Germany.) for breeding animals. The PSU bottles and cages as well as the aspen wood shelters (instead of plastic) were used to reduce the risk of migration of BPA that potentially could confound the study results.

The animals were kept at 22 °C with a humidity of 55% ± ± 5, 10 air changes per hour and a light-dark cycle of 12–12 h with lights on from 9 PM to 9 AM. Light and dark cycle was reversed because of behavioral testing of the adult offspring, which was done during their active period, that is, during the dark cycle. Behavioral data are reported in Hass et al. (2016).

Dams were gavaged once daily with 0, 0.025, 0.25, 5, or 50 mg BPA/kg bw/day from GD 7 to the day before expected birth (GD 21) and from the day after birth until pup day (PD) 22. PD 0 was defined as the day of expected birth. The animal studies were performed under conditions approved by the Danish Animal Experiments Inspectorate (Council for Animal Experimentation, authorization number: 2012-15-2934-00089) and by the in-house Animal Welfare Committee of the National Food Institute at the Technical University of Denmark.

Necropsies

Offspring were killed on PD 22, at 3–4 months of age (approximately PD 100) and at 13 months of age (approximately PD 400) for mammary gland analysis. At necropsies at all ages, the animals were anesthetized with O2/CO2 and decapitated. In each age group, one offspring per sex per litter were selected for necropsies. On PD 22, one abdominal (4th) mammary gland per animal was dissected from the skin for whole mounting. Adult males were killed on PD 90–115 and adult females on PD 104–129 (both males and females referred to as PD 100 in the following) and on PD 398–416 (referred to as PD 400 in the following). No males were killed on PD 400. In adults, male and female abdominal (4th) mammary glands with adjacent lymph nodes were dissected and fixed in formalin for histology. On PD 400, pituitary glands were additionally removed and gross lesions in the pituitary glands were described. The pituitary glands were weighted and fixed in formalin for histopathological evaluation. Females were selected for necropsies when assessed to be in estrous or proestrous, evidenced by vaginal smears in the morning showing macroscopically evident clots of epithelial cells as described in Isling et al. (2014) and evaluated microscopically and classified in estrous or not in estrous. Estrous was defined as the presence of large amounts of cornified cells in the smear.

Mammary gland whole mounts

Whole mounts were fixed in formalin and stained with alum carmine as described in Mandrup et al. (2015). Whole mounts were scanned (4800 dpi) and analyzed also as described in Mandrup et al. (2015), using IMAGE PRO PLUS 7.0 software (Media Cybernetics, Bethesda, MD, USA). Mammary glands (n = 13–17 per dose group for females and n = 13–19 per group for males) were evaluated for outgrowth (outer area defined as the smallest polygon enclosing the gland, longitudinal growth (LG), transverse growth (as defined by Mandrup et al., 2012), distance to the lymph node and distance to the fifth gland), the number of terminal end buds (TEBs) in zone C (end buds with a diameter ≥ 100 μm), and density (mean of scores given for area, number of buds, number of branches, branch generations, and TEBs). Density scores were defined differently for males and females and were therefore not comparable between the sexes.

Histology of pituitary and mammary glands

Fixed tissue samples were routinely processed, embedded in paraffin, sectioned (3 μm), stained with hematoxylin and eosin (H&E), and examined blindly to treatment groups by light microscopy. One section of pituitary glands from all female offspring PD 400 was examined with emphasis on presence of nodular hyperplasia and adenoma in pars distalis (MacKenzie & Boorman, 1990). From females with gross lesions, an extra section was examined if histological lesions were not observed in the first section in the pituitary gland.

Histological examination of adult mammary glands (males and females PD 100 and females PD 400) was performed on one section of mammary gland. The glands were sectioned horizontally as described in Hvid et al. (2011) and all ductular and alveolar structures in the section were evaluated for each animal (Hvid et al., 2011). The sections used for histological evaluation...
were representative of the mammary gland and deep enough to include primary to tertiary ducts and a large number of both ducts and lobular structures. Histological examination of adult female mammary glands included the evaluation of lobular development (lobule types ranging from single alveoli to well-developed lobuli and lobular density), lobule morphology (shift to male-like morphology with no lumens or small lumens and multilayered epithelium), intraductal hyperplasia (four or more layers of duct epithelium). To evaluate the extent of branching, the density of ducts was evaluated in females PD 100. Four females on PD 100 and 21 females on PD 400 were not found to be in estrous at the time of killed. These were omitted from the histological evaluation of lobular development because these changes could be related to the estrous stage (Schedin et al., 2000). Intraductal hyperplasia and changes in lobular morphology toward a lobuloalveolar pattern (male-like) are not regarded as normal cyclical changes in females, and all females were evaluated for such changes. Male mammary glands were evaluated for tubuloalveolar pattern (female-like morphology with lumens and single layered epithelium), secretory activity (dilated ducts with secretory material in ductal or alveolar lumens and vacuolated alveolar epithelium), and hypertrophy.

Results
In females, histological examination of adult mammary glands showed a statistically significant increase in intraductal hyperplasia in females PD 400, but not PD 100. At PD 400, intraductal hyperplasia was observed in all dose groups, but the distribution and severity was increased in some BPA-dosed groups compared to controls (Fig. 2). In controls, a mild degree of intraductal hyperplasia affecting less than 30% of the mammary tissue was seen in five of 20 animals. Extensive intraductal hyperplasia (more than 30% of the mammary tissue) was observed in five of 18 females in the group exposed to 0.25 mg/kg BPA, but not in controls (p = 0.017, Fig. 2). The prevalence of extensive intraductal hyperplasia seemed lower at 5 and 50 mg/kg BPA than at 0.25 mg/kg (affecting one of 18 females at 5 mg/kg and two of 18 females at 50 mg/kg; Fig. 2). However, the difference between 0.25 and 5 mg/kg was not statistically significant (p = 0.18). Presence of adenomas or hyperplasia in the pars distalis of pituitary glands were not correlated with intraductal hyperplasia or lobuloalveolar pattern, as the prevalences of intraductal hyperplasias were comparable in animals with and without pituitary hyperplasia (36 and 26%, respectively). In 1-year-old females, fewer (yet not statistically significant) exposed animals were irregularly cycling compared to controls (Hass et al., 2016). It is therefore improbable that the hyperplastic changes are related to changes in cycling. No statistically significant changes were observed in lobular development, lobular morphology in females PD 100 or 400 or in branching in females PD 100.

In adult males, lobuloalveolar morphology is the typical morphology of mammary glands (Cardy, 1991; Wang et al., 2006). In this study, some males showed lobuloalveolar morphology with basally situated nuclei, resulting in a tubular-like orientation of the epithelium, although a tubuloalveolar pattern with lumens was not present. These changes were considered as an early shift toward a female-like morphology. Areas of female-like morphology (tubuloalveolar pattern or basal nuclei) of the male mammary glands were seen in a few controls at PD 100. In the highest dose group, this could be observed in the majority of male mammary glands. A trend to increased frequency of males with female-like morphology was observed in the two highest dose groups (Fig. 3; p = 0.05 and 0.1 for the two highest doses in a two-sided 2 × 2 Fisher’s exact test). Female-like structures can appear in small amounts in controls as a normal background variation in young males before full differentiation of the glands to the male-like morphology (OECD, 2011a). On PD 100, male mammary glands should be fully differentiated (Cardy, 1991).
however, as the female-like changes in the current study were observed in very few structures in each gland they may be chance findings.

Histological evaluation of pituitary glands at PD 400

No statistically significant differences were observed between exposed groups and controls in the incidence of pituitary gland nodular hyperplasia and/or adenoma in pars distalis. A slightly increased incidence of pituitary adenoma was found in the high-dose BPA group (group 5), but this was not statistically significant (Fig. 4).

DISCUSSION

Previous studies on mammary gland effects of perinatal BPA exposure have shown proliferative changes in young and adult female and male rodent offspring (Table 1). Just as in our study, some of these changes are only seen at low, but not at high doses, whereas other changes are seen mainly at the high-dose levels. Data from the present and other mammary gland studies on BPA all together suggest that perinatal exposure to BPA induce effects that do not follow a classical monotonic dose–response relationship. This cannot be readily explained, but a pattern seems to appear when evaluating all available data together. Table 1 lists the findings in this study together with previous studies using more or less comparable study designs for evaluation of BPA toxicity.

Female mammary gland effects

In this study, the main finding in female mammary glands was an increased incidence of intraductal hyperplasia. In other studies, the proliferative changes reported in female rats span from increased ductal area and number of ductal and alveolar structures to hyperplasia or proliferation of ductal epithelium (Table 1). Interestingly, effects of BPA on intraductal hyperplasia and proliferation have previously been seen in the lower dose range up to 0.25 mg/kg in adults (Durando et al., 2007, 2011; Murray et al., 2007; Betancourt et al., 2010) but not at higher doses (Murray et al., 2007; Durando et al., 2011). Taken together with the data from our study, it appears that the effects of BPA on mammary gland hyperplasia and proliferation do not follow a typical monotonic dose–response pattern. In contrast, effects on growth and development are seen at 0.025 mg/kg and at higher doses at prepuberty and in adults (Markey et al., 2001; Delclos et al., 2014).

Strikingly, the hyperplastic changes were observed in adult females although exposure did not continue into adulthood, whereas effects in prepubertal female mammary glands were weak or absent in this study. Accordingly, Markey et al. (2001) and Durando et al. (2007) showed that changes in development and epithelial proliferation of the female glands exposed to BPA prenatally were only apparent after sexual maturation for exposures corresponding to the low-dose range of our study (0.025 and 0.25 mg/kg) (Markey et al., 2001; Durando et al., 2007).

© 2016 American Society of Andrology and European Academy of Andrology

Andrology, 2016, 4, 673–683

677
contrast, higher doses of BPA-induced effects on growth and development in both prepubertal and adult female mammary glands (Delclos et al., 2014). It is possible that different mechanisms of action are prevailing at different dose levels. Estrogens are known to have different effects at different doses at the cellular level (Amara & Dannies, 1983; Soto & Sonnenschein, 1987). Overall, low doses of BPA appear to increase the risk for developing hyperplasia later in life, whereas higher doses appear to increase early growth and development of the glands.

In accordance with our findings, previous studies have shown intraductal hyperplasia in controls as well as in exposed animals, but exposure to BPA increases the incidence (Durando et al., 2007, 2011). In this study, the increased incidence of intraductal hyperplasia was observed in BPA-exposed females from the dose group exposed to 0.25 mg/kg bw/day, when the animals were 14 months of age, but not on PD 100. Such ductal changes have also been reported in previous BPA studies at doses down to 0.025 and 0.0025 mg/kg and in younger females on PD 50, 110, and PD 180 (Durando et al., 2007, 2011; Murray et al., 2007). In those studies, a quantitative technique was used for histological evaluation, and it is possible that using a quantitative technique instead of a scoring technique could have improved our ability to detect small changes at the lower dose (0.025 mg/kg) or at an earlier age. When evaluating histological data, it is highly relevant to consider that even perinatally induced lesions may become more severe at increasing ages. For example, studies in female rats exposed to a carcinogen on PND21 revealed an increased incidence of intraductal hyperplasia with increasing age (Thompson et al., 1998, 2000). Thus, at increasing ages it may become easier to detect treatment-related effects with crude methods such as scoring evaluation of only one section per tissue per animal, as long as control levels are relatively low. Despite a risk of more background ‘noise’ at increasing age, it seems warranted to continue investigating mammary glands in older females, and at the same time to continue development of more sensitive methods for mammary gland evaluation in younger animals. Further development of quantitative methods may increase the sensitivity of mammary gland examination using the whole-mount method or histological examination.

BPA-induced intraductal hyperplasia (Durando et al., 2007, 2011; Murray et al., 2007) and increased mammary development (Munoz-de-Toro et al., 2005; Moral et al., 2008; Ayyanan et al., 2011) may not be rodent specific. A study in Rhesus monkeys also showed increased mammary development in female offspring few days after birth following prenatal exposure to BPA (Tharp et al., 2012). In general, the intraductal hyperplasia observed in these studies is comparable to hyperplasia observed in human breasts (Singh et al., 2000) and are likely to be preneoplastic lesions (Thompson et al., 1998). Several studies have shown increased susceptibility to mammary carcinogens after perinatal exposure to...
BPA as reviewed by Soto et al. (Soto et al., 2013). For example, exposure to a subcarcinogenic level of \(N\)-nitroso-\(N\)-methylurea (NMU) induced malignant tumors in females prenatally exposed to BPA (Durando et al., 2007). Acevedo and co-workers found adenocarcinomas in females exposed to BPA, but not in controls, although the animals were not exposed to a carcinogen later in life.
(Acevedo et al., 2013). Accordingly, our observation of increased intraductal hyperplasia at PD 400 may thus indicate a higher risk for developing hyperplasia and mammary tumors in adulthood.

In general, the present findings indicate that BPA may contribute to precocious breast development and increase the risk for breast cancer in perinatally exposed individuals.

Male mammary gland effects

Interestingly, male mammary gland development also appears to be affected by BPA in a similar way as female mammary glands. Proliferative changes are found in males at different ages, as an increased outgrowth prepubertally was seen in this study and reported by Kass et al. (2015), and as an increased ductal area, increased number of branching points, and increased proliferation of epithelial cells was reported in adults (Vandenbergh et al., 2013b). Proliferative changes (hyperplasia) were not investigated in adult males in this study as evaluation of hyperplasia is hampered by the lobuloalveolar morphology of well-differentiated male mammary glands. Together, data suggest that male mammary gland development is increased by perinatal BPA exposure. In this study, proliferative changes were observed already before sexual maturation of males, and already at the lowest dose of BPA (0.025 mg/kg). Based on the findings in male mammary glands, no NOAEL could be established for mammary gland effects in this study. This supports other studies showing absence of NOAEL for mammary changes in males down to the lowest dose tested, that is, 0.00025 mg/kg (corresponding to 0.25 µg/kg) (Vandenbergh et al., 2013b). Overall, there is a strong weight of evidence for mammary effects of perinatal BPA exposure in the µg/kg dose range.

Altogether, our data support previous studies showing that normally male mammary glands are susceptible to BPA exposure, and that male gland development can be more sensitive to endocrine disruption than female mammary glands (You et al., 2002; Mandrup et al., 2012). Male mammary glands are rarely examined when investigating chemicals suspected to be endocrine disrupting although effects may be detected earlier or at lower doses in males than in females. The implications of the findings observed in male rats are not known, but these changes may suggest that boys and men exposed to endocrine disrupters can develop more breast tissue and thus increase the susceptibility for gynecomastia.

Non-monotonic dose–response effects on mammary glands

The most marked effects observed in male and female mammary glands were seen at the lower doses tested and results at the higher doses approached control levels suggesting a non-monotonic dose–response curve for mammary gland effects. Indications of non-monotonic dose–response curves for BPA have been described by others for proliferative mammary gland changes at different ages, showing statistically significant effects at doses of 0.0025 mg/kg in 95-days old females (Murray et al., 2007), 0.025 mg/kg in 110 days old females (Durando et al., 2011), and 0.025 mg/kg in 7-9 months old males (Vandenbergh et al., 2013b) but not at higher doses. Additionally, such non-monotonic dose–response curves have also been reported for changes in gland development. Studies have shown significant effects on the number of branch points at 0.00025 and 0.0025 mg/kg BPA but not at higher doses in 3–4 months old male offspring (Vandenbergh et al., 2013b) and changes in ductal elongation with significant differences between 0.025 and 0.25 mg/kg BPA in 1-month old offspring (Markey et al., 2001).

Interestingly, Delclos et al. (2014) only found significant effects (increased number of ducal structures) in mammary gland in the highest doses investigated, although they included doses of 0.025 and 0.26 mg/kg BPA and investigated a large number of animals. It should be noted, however, that endpoints showing low-dose effects in previous BPA studies and in this study (i.e. intraductal hyperplasia and epithelial proliferation) was not evaluated in adult offspring in the Delclos study (Table 1). Moreover, pups were dosed by gavage postnatally from PD1 and the exposure period in that study persisted until killed in adulthood and these changes in study design may have implications on the mammary gland development. Reasonably enough, Delclos et al. (2014) performed the statistical analysis in two subgroups to minimize false negative results, as they included many exposure groups (two control groups, nine BPA exposure groups and two ethinyl estradiol exposure groups) in their study. Yet, the distribution of the exposure groups in the statistical subgroups favored the high-dose groups (100 and 300 mg/kg), as all other seven BPA exposure groups were analyzed statistically together, leading to a higher risk for false negative results in all the low-dose groups compared to the two highest dose groups. If the exposure groups had been distributed equally in two subgroups (e.g. the five lowest doses in one group for statistical analysis and the four highest doses in another group), the results may have shown significant effects in other exposure groups. We have tentatively analyzed the data on duct hyperplasia presented in Delclos et al. (2014) in an alternative way (using Fisher’s exact test) and found significantly increased frequencies of duct hyperplasia in 3-months old females down to 0.08 mg/kg bw/day (National Food Institute DTU, 2015) (Table 1).

Non-monotonic dose–response curves have been observed for other endpoints in this BPA study. Data on spatial learning and sperm count showed significant effects at the lowest dose but not at higher doses (Hass et al., 2016). Data from the present and other male mammary gland studies on BPA all show that effects are seen in the lower dose range up to 0.25 mg/kg and again at much higher doses (Table 1). Altogether, the available data suggest that proliferative effects of perinatal exposure to BPA on mammary glands do not follow a classical monotonic dose–response relationship.

Overall, strong evidence points to mammary effects of perinatal BPA exposure at dose levels in the µg/kg area, around 0.25 mg/kg/day or lower suggesting that the new temporary TDI for BPA set by EFSA of 4 µg/kg bw/day is not sufficiently protective with regard to endocrine disrupting effects in humans.

Pituitary gland histology at PD 400

Pituitary adenomas were observed in all groups as expected because spontaneous pituitary adenomas are a common finding in aged rats (Trouillas et al., 1982; Barsoum et al., 1985; Carlus et al., 2013). Increased incidence of pituitary adenoma has previously been shown in aged Wistar rats perinatally exposed to mixtures of endocrine disrupting chemicals, especially for a mixture of predominantly anti-androgenic chemicals (Isling et al., 2014). However, in this study no statistically significant differences in the incidence of pituitary focal nodular hyperplasia and/or adenoma were observed between BPA-exposed groups and controls.
and no associations between pituitary hyperplasia and/or adenomas and mammary intraductal hyperplasia were seen. Although not immunohistochemically confirmed, a high number of the pituitary adenomas seen in the available studies are likely to be prolactinomas, which commonly occur in aging rats (Trouillas et al., 1982; Barsoum et al., 1985). Prolactinomas can be induced in rats by prolonged administration of estrogen, as estrogen is known to stimulate prolactin release from lactotrophs and inhibit the activity of hypothalamic neuroendocrine dopaminergic neurons (Welsch et al., 1971; Sarkar et al., 1982; DeMaria et al., 2000; Lloyd, 2015). Consequently, endocrine-disrupting chemicals with estrogenic activity could be speculated to influence the development of pituitary adenoma and the specific types of adenomas, but no relation to BPA exposure was seen in this study. Further studies on prolactin serum levels and immunohistochemistry of pituitary glands could enlighten the nature of the hyperplasias and adenomas observed in controls and exposed animals.

CONCLUSION
Our study confirmed the findings reported by others, showing intraductal hyperplasia in the µg/kg bw dose area but not at higher doses of BPA. Moreover, male mammary development was increased in the lowest dose investigated, that is, 25 µg/kg bw per day but not at higher doses and no NOAEL was determined for mammary gland effects. This effect observed in rats at 25 µg/kg bw per day indicate that the new temporary TDI of 4 µg/kg bw per day proposed by EFSA is not sufficiently protective with regard to effects on mammary gland development.

In this study, effects of BPA on mammary gland development was found at 0.025 or 0.25 mg/kg BPA depending on the endpoint, method, and age of investigation. The effects observed in this low-dose range are considered likely to be treatment-related effects although no significant effects are observed at higher doses and a classical monotonic dose–response curve is not observed. The available data on BPA effects on mammary glands support that non-monotonic dose–response relationships for these effects occurs. As these effects are expected to be related to the endocrine-disrupting mode of action of BPA, the results indicate that also other endocrine disruptors may show non-monotonic dose–response relationships for mammary gland effects with effects occurring only at the lower doses. In future studies on endocrine disruptors, it is therefore recommended to consider inclusion of low doses. Also, in risk assessment of endocrine disrupters there is a need for more awareness that non-monotonic dose–response relationships can occur.

ACKNOWLEDGEMENTS
The present research was performed with the excellent contribution of laboratory technicians Vibeke Kjær, Sarah Simonsen, Ulla El-Baroudy, Heidi Letting, Dorte Korsbæk, Lillian Sztuk, Bo Herbst, and Birgitte Plesning together with Anne-Marie Orn-green and the animal technicians. They are all thanked for their outstanding work in this project.

DECLARATION OF INTERESTS
The authors declare to have no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

FUNDING
The work presented was supported by grants from the Danish Environmental Protection Agency.

MEETING COMMENTS
Martine Applanat (Paris, France)
There is controversy concerning the lower doses of bisphenol A (BPA) and their effects on the mammary gland. I was surprised that you saw hyperplasia of the intraduct epithelium at 400 postnatal days but not before following a dose of 250 µg/kg/day. Some technical details must be considered in order to interpret the results. Were the housekeeping cages controlled and BPA free? Was the diet phytoestrogen-free? Did you measure blood BPA concentration and what was the lowest detectable level? At what stage of the estrous cycle were the rats sacrificed? Measurement of these parameters is fundamental for the evaluation of the statistical effect of the results.

Karen Riiber Mandrup (Søborg, Denmark)
We did not identify intraductal hyperplasia before the age of 14 months, although this has been described in other studies. In other studies, hyperplasia at an earlier age was detected using more quantitative methods including taking several serial histological sections of each gland and counting the cells. We only scored one section per gland and were less likely to detect minor changes at an earlier age. Our cages and drinking bottles were BPA free. The diet was selected to be soy and alphaalpha free. Our conditions were controlled to minimize contamination from the environment.

Pete Myers (Charlottesville, USA)
It is good to see that you have replicated Ana Soto’s work especially as you work for a Government agency. You cited the study of Delcos et al. (2014) which differed from other studies in that low-dose levels were not significantly different from their controls. That paper should not be considered because the controls were contaminated with BPA and the results are not reliable.

Karen Riiber Mandrup
We can discount their apparent lack of low-dose effect. However, their higher doses were greater than the control levels and the effects seen in those animals are valid.

David Kristiansen (Copenhagen, Denmark)
Have you studied the mechanism of the intraduct hyperplasia to see if there is signal transduction, and have you examined the adipocytes after exposure to BPA? It is known that growth of alveolar cells comes from fat cells by a process of transdifferentiation because of signaling from the gonad.

Karen Riiber Mandrup
We have not investigated the mechanisms behind the changes observed.

REFERENCES

