Interpenetrating polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

Ogliani, Elisa; Yu, Liyun; Skov, Anne Ladegaard

Publication date: 2016

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Interpenetrating polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

Elisa Ogliani (1), Liyun Yu (1), Anne Ladegaard Skov (1)

(1) The Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
Interpenetrating polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

Elisa Ogliani
Technical University of Denmark
elisa.ogliani@yahoo.it

Ionically assembled silicone polymers:
- Softening effect
- Very high dielectric permittivity
- Self-healing properties

Covalently cross-linked silicones:
- Mechanical integrity
- High breakdown strength

Goal: DRIVING VOLTAGE
Actuation Performance = ε'/γ
Interpenetrating polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

Elisa Ogliani
Technical University of Denmark
elisa.ogliani@yahoo.it

... Overview of the improved properties

More than 100% elongation of the reassembled samples

INCREASING IN LIFE-TIME of DEs

<table>
<thead>
<tr>
<th></th>
<th>$Y = 3G'$ [kPa] (0,01 Hz)</th>
<th>$\tan \delta$ (rheo) (0,01 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PDMS</td>
<td>64,3</td>
<td>0,06</td>
</tr>
<tr>
<td>Commercial silicone LR3043/30</td>
<td>252,3</td>
<td>0,08</td>
</tr>
<tr>
<td>AMS162 + B12</td>
<td>37,3</td>
<td>0,01</td>
</tr>
<tr>
<td>IPNs LR3043/30 : (AMS162+B12)</td>
<td>255,1</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 wt% : 30 wt%</td>
<td>113,7</td>
<td>0,08</td>
</tr>
<tr>
<td>50 wt% : 50 wt%</td>
<td>30,9</td>
<td>0,05</td>
</tr>
<tr>
<td>30 wt% : 70 wt%</td>
<td>30,9</td>
<td>0,05</td>
</tr>
<tr>
<td>10 wt% : 90 wt%</td>
<td>30,5</td>
<td>0,03</td>
</tr>
</tbody>
</table>
2.2.5 Interpenetrating polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

Elisa Ogliani
Technical University of Denmark
elisa.ogliani@yahoo.it

... For more informations you can visit my poster