Ni-hydroxide growth in vacuum plasma sprayed electrodes for alkaline electrolysis

Bentzen, Janet Jonna; Zhang, Wei; Jørgensen, Peter Stanley; Bowen, Jacob R.; Reissner, Regine

Publication date: 2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Ni-hydroxide growth in vacuum plasma sprayed electrodes for alkaline electrolysis

Janet Jonna Bentzen¹, Wei Zhang², Peter S. Jørgensen¹, Jacob R. Bowen¹, Regine Reißner³

¹Department of Energy Conversion and Storage, Technical University of Denmark – Risø Campus, Denmark
²School of Materials Science and Engineering, Jilin University, Changchun, China
³Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Stuttgart, Germany

The EU FCH-JU RESelyser project is concerned with the development of high pressure, high efficiency and low cost alkaline water electrolysers that can be operated variably and intermittently to meet the demands for integration into energy networks relying on fluctuating renewable energy. The project utilizes NiAlMo alloy electrodes produced at the German Aerospace Center (DLR) by vacuum plasma spraying (VPS). VPS results in heterogeneous microstructures consisting of a multitude of intermetallic phase sub domains and pores. Prior to electrolysis operation the electrodes are activated by leaching of Al and some Al containing intermetallic phases leaving micrometer pores and nanometer dendritic pores increasing the surface area available for the electrolysis reactions.

The vacuum plasma sprayed electrodes were analyzed by high resolution SEM and TEM before and after electrolysis operation and after storage in water. Analyses of cross sections and electrode surfaces revealed nano flake structures, desert rose like, on the surface and in the pores on several electrodes. The formation of the desert rose structure appeared to be related to the electrolysis operation as well as the duration of storage in distilled water. The size of the faceted flakes varied from tens of nm to 1-2 micrometer where the thickness varied from a few nm to 50 nm. X-ray diffraction of the surfaces covered with the desert rose structures revealed a very high content of theophrastite, Ni(OH)₂. The desert rose structure was confirmed by TEM to consist of Ni(OH)₂. Surface area measurements (BET) of the electrodes before and after electrolysis test indicated a three times increase of the surface area. The possible implications for the application and performance of the electrodes are discussed.

Acknowledgements: This work is funded by the European Union’s Seventh Framework Programme for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° [278732] 10.

Keywords: vacuum plasma sprayed electrodes, alkaline electrolysis, desert rose structure, Ni-hydroxide

*Presenting author E-Mail: jabe@dtu.dk
Figure 1: Growth of Ni-hydroxide nano flakes on the electrode surface and in pores. SEM images of surface a) as sprayed; b) leached, washed and dried; c) leached, washed and stored in water 3 d; d) leached, washed, stored 210 d in water; e) leached, washed, stored 120 d in water, and operated as electrode for 30 min.; f) leached, washed, stored 90 d in water, and operated as electrode for 28 d.