Simulation and Measurement of Angle Resolved Reflectance from Black Si Surfaces

Davidsen, Rasmus Schmidt; Wu, Kaiyu; Schmidt, Michael Stenbæk; Boisen, Anja; Hansen, Ole

Publication date: 2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Simulation and Measurement of Angle Resolved Reflectance from Black Si Surfaces

Rasmus Schmidt Davidsen*, 1, Kaiyu Wu1, Michael Stenbæk Schmidt1, Anja Boisen1, Ole Hansen1

1 Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), 2800-Lyngby, Denmark
*rasda@nanotech.dtu.dk, Ørsteds Plads building 345East, 2800 Lyngby, Denmark

Simulation and Measurement of Angle Resolved Reflectance from Black Si Surfaces

Rasmus Schmidt Davidsen*, 1, Kaiyu Wu1, Michael Stenbæk Schmidt1, Anja Boisen1, Ole Hansen1

1 Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), 2800-Lyngby, Denmark
*rasda@nanotech.dtu.dk, Ørsteds Plads building 345East, 2800 Lyngby, Denmark

<1% reflected

Experimental specular and total reflectance as a function of incident angle. The average reflectance in the wavelength range 300-1000 nm and the value at a wavelength of 550 nm are shown (left). The specular reflectance at incident angles from 50-85° is shown to the right.

Concept

Simulation Method

Simulation Result

Experimental Results

Conclusion

Black Silicon nanostructures suppress AM1.5G weighted, average reflectance from solar cell surfaces to less than 1%.

Nanostructures are fabricated by means of maskless reactive ion etching (RIE) using SF6 and O2 plasma.

SEM-images at 45° (top) and 0° (bottom) of RIE-textured Si surfaces with 300 nm nanostructure height. The nanostructures represent approximately linear (top, left) and non-linear (top, right) graded refractive index profiles.

The nanostructure topology is modelled as a graded refractive index, Λ is a nonlinearity parameter. The index shape function was defined as \(n(z, h, Λ) = \ln(1 + z/L)/\ln(1 + h/L) \) in case of a non-linear index profile and \(n(z, h, Λ) = z/h \) in case of a linear index profile; here the parameters \(L = 10 \) nm and \(h = 300 \) nm were used.

Simulated reflectance as function of incident angle at a wavelength of 550 nm for surfaces with nanostructures of 300 nm in height in case of (a) linearly graded refractive index and (b) non-linearly graded refractive index. The insets in (a) and (b) show the simulated reflectance at incident angles of 0-70°. The non-linear profile yields the lowest reflectance; below 1% for angles up to 45°.

In conclusion, angle-resolved reflectance from nanostructured Si surfaces realized by maskless RIE texturing has been simulated and measured. In both simulation and experiment the specular reflectance is below 10% at incident angles below 65° and below 1% at incident angles below 45° in the case of non-linear graded refractive index. From the simulation results the non-linear graded refractive index yields lower reflectance than the linearly graded refractive index.