How reliable is the Peak-over-threshold extreme wind assessment method?

On the Peak-Over-Threshold (POT) Extreme Wind estimation as applied at DTU Wind Energy - Recently implemented in WAsP Engineering

Rathmann, Ole Steen; Larsén, Xiaoli Guo; Mann, Jakob; Ejsing Jørgensen, Hans

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
How reliable is the Peak-over-threshold extreme wind assessment method?

On the Peak-Over-Threshold (POT) Extreme Wind estimation as applied at DTU Wind Energy
- Recently implemented in WAsP Engineering -

Ole Rathmann, Xiaoli Larsén,
Jakob Mann, Hans E. Jørgensen
DTU Wind Energy, Denmark
Extreme Wind Prediction - background

• For wind turbine selection, typically the 50-year extreme wind is required

• Annual Max. method ¹): Based on Ann.max wind speeds distribution.
 – Requires typically 10Y+ of data
 – Gumbel double-log distribution is used for extrapolating to 50 Y.

• POT (Peak Over Threshold) ²): Based on individual storm winds distribution
 – Potentially, shorter time series should be usable
 – 1000$ Q: How short time series could be used without excessive uncertainty?

²) Abild J. Application of the wind atlas method to extremes of wind climatology.
POT - Basics

- Based on Peak-wind speeds of individual storms
- Considers the exceedance rate R over a threshold (how many per year?)
 - Use $\text{Min}(U_{\text{Ann.Max}})$ as reference threshold
- How does R decrease with increasing threshold?

Storms discriminated by
- Lower speed threshold
- Max. storm duration
- Min. storm separation

Exceedance rate R
- Exponential decay
- Extrapolation to a certain return-time to get e.g. U_{50}
- Quality control from statistical test (Poisson statistics)
POT – Demonstration – 4 test cases

- Indication of the reliability of the POT-method from 4 test cases

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Type</th>
<th>Height</th>
<th>Time series length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jylex</td>
<td>Denmark</td>
<td>Inland</td>
<td>24.0 m</td>
<td>16 years</td>
</tr>
<tr>
<td>Sprogoe</td>
<td>Denmark</td>
<td>Off-shore</td>
<td>70.0 m</td>
<td>22 years</td>
</tr>
<tr>
<td>Abu Darag</td>
<td>Egypt/Red Sea</td>
<td>Subtropical high</td>
<td>24.5 m</td>
<td>12 years</td>
</tr>
<tr>
<td>Bloemenfontein</td>
<td>South Africa</td>
<td>Continental</td>
<td>10.0 m</td>
<td>17 years</td>
</tr>
</tbody>
</table>

- Various time series lengths (full length; 6, 7 or 8y; 3y; 2y)
- Compared to ann.max method (full time series length)
POT – Demonstration – 4 test cases (A)

- Indication of the reliability of the POT-method from 4 test cases
 - Uncertainties deduced from Poisson-deduced statistics

POT – Demonstration – 4 test cases (B)

• Indication of the reliability of the POT-method from 4 test cases
POT – Demonstration – 4 test cases (C)

- Indication of the reliability of the POT-method from 4 test cases
POT – Demonstration – 4 test cases (D)

• Indication of the reliability of the POT-method from 4 test cases
POT and Terrain effects

Beware!

• POT may be influenced by terrain effects when predicting 50-year winds at turbine sites by high-wind data from a met-tower:
 – A certain measured “storm wind-peak” may not be a storm wind peak when transformed from mast site to a “predicted” wind turbine site
 – What seems to be a low or moderate wind at mast site may become a “storm wind” when transformed to a predicted wind turbine site.

• Special measures must be exercised to ensure that all relevant high-wind data are transformed to wind turbine sites for the POT-extreme wind estimation there.
Short term data – why do predictions fail? What to do about it?

- Short term data: 1 or a few years
 - Normally represents short-term fluctuations quite well: 10 min. recording interval or better assumed.

- Long term year-to-year variance CANNOT be represented
 - E.g., for a single year: is this a high, average or low year ???
 - Unless you combine with a long term reference data set

- Long-term model wind data from reanalysis data + Mesoscale-model may be used
 - Model data (1h) have an insufficient representation of the dynamics at relatively high frequency
 - Impact of the high frequency dynamics must be corrected for
Model-data high frequency dynamics issue
How to handle this?

- Power spectrum
 - Model data 32Y
 - Measured data 1Y
 - Both generalized
 (terrain cleansed)
- Hybrid spectrum
 - Low freq.: model l.t. data
 - High freq.: meas. s.t. data
- Relation between power spectrum and predicted T_0-extreme wind
- Spectral correction procedure4:
 - Use model- and hybrid spectra $+$ U_{max} equation to correct U_{max} for all years of l.t. data series.
 - Use set of corrected U_{max} in combination with Ann.max method

\[
\overline{U}_{max}(T_0) = \overline{U} + \sigma \sqrt{2 \ln \left(\frac{1}{2\pi} \sqrt{\frac{m_2}{m_0}T_0} \right)}, \sigma = \sqrt{m_0}
\]

AnnMax – POT - Spectral Correction

- Spectral correction applied to off-shore data: Horns Rev@45m
 - Involves *terrain effects cleansing* and *terrain effects inclusion*
 - Compared to POT and Annual Max

The "Spectral correction" needs further validation

Spectral correction:
- Model data: 32 years (1979-2011)
 - CFSR-ReAn. Data (NCEP)
- Obs.data: 1 year (2001/2005-06)
Conclusion

• POT compares well with the annual Max. method
 – Same time series length: same result as Ann.Max. – but with somewhat lower uncertainty
 – Short time series:
 o Agrees largely with l.t. Ann.Max. – but with higher uncertainty, as expected
 o No or slightly negative bias
 o Cannot take long-term variability into account – unless long term reference data are somehow included (trivial)

• Spectral correction is a promising method to combine a short measured time series with long-term wind data derived from re-analysis data set by mesoscale models
 – Being validated at DTU Wind Energy against a number of cases
 • for implementation in WAsP Engineering.
Acknowledgements

Thanks are due to the following organizations and institutions for supplying wind data for this study:

- Sprogoe: Storebaelt A/S *(Great Belt Bridge)*
- Jylex: DTU Wind Energy *(former Risoe)*
- Horns Rev: DONG Energy and Vattenfall
- Abu Darag: Wind Atlas for the Gulf of Suez / Egyptian NREA & DTU Wind Energy *(former Risoe)*
- Bloemenfontein: South African Weather Service
Spectral correction – work flow

1. Long-term Global Reanalysis Data
 - Mesoscale model

2. Long-term On-site Reanalysis data
 - Consistent Generalization (mesoscale-terrain cleansing)

3. Short-term On-site Measured data
 - Generalization (terrain cleansing)

4. Spectral Correction Model and Hybrid spectra

5. Standard condition
 - Extreme Wind Climate
 (extreme wind time series)

6. “Application” (terrain effects inclusion)
7. On-site Extreme Wind Climate
 (extreme wind time series)

8. On-site 50Y-wind