Impact of operational conditions and reactor configuration on process performance and microbial community in short solid retention time EBPR systems

Valverde Perez, Borja; Wágner, Dorottya Sarolta; Cecchin, Francesca; Jensen, Christian K.; Smets, Barth F.; Plósz, Benedek G.

Publication date: 2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Impact of operational conditions and reactor configuration on process performance and microbial community in short solid retention time EBPR systems

1. INTRODUCTION

Current research promotes resource recovery using different strategies:

- Energy recovery using A-stage systems [1]
- Phosphorus recovery using low SRT EBPR systems [2,3]
- To minimize ammonia oxidation, so it can be assimilated by phototrophic organisms [2]
- Water reuse for “fertigation” [2-4]

2. OBJECTIVES

- To assess the start-up operation of a short SRT EBPR system
- To define the microbial community affecting the performance of the short SRT EBPR system
- To test the process performance stability in two different configurations:
 - Sequencing batch reactor (SBR)
 - Continuous flow system

3. RESULTS

Sequencing Batch Reactor:

- Stable operation at SRT 8 days (day 50).
- Incomplete nitrification when the SRT was shifted to 5 days (data not shown)
- Filamentous bulking after nitrifiers were washed out at SRT=4 days
- qFISH revealed high abundance of M. parvicella (7%) and Thiothrix (17%) at relatively low DO levels in aerobic phase

Continuous flow system:

- Filamentous bulking occurred at SRT 8 days
- Bulking corresponded with poor phosphorus removal and high Thiothrix abundance (Sulfate reduction correlated with SVI and P-removal)
- Action taken: The anaerobic HRT was reduced to phase out the SBRs:
 - Significant reduction in SVI
 - Significant reduction in sulfate reduction
 - P-removal, however, was not recovered

4. CONCLUSIONS

- Low SRT EBPR systems are sensitive to bulking due to Thiothrix and M. parvicella
- SBR is more robust due to imposed substrate gradients
- Sulfate reducers compete with PAOs for volatile fatty acids (via completed or uncompleted oxidation)
- Sulfate reducers can be controlled by manipulating the anaerobic HRT

ACKNOWLEDGEMENT

The research was financially supported by the Danish Council for Strategic Research, as part of the Integrated Water Technology (InWaTech) project, a collaboration between the Technical University of Denmark (DTU) and the Korea Advanced Institute of Science and Technology (KAIST).

References: