Parametric City Scale Energy Modeling Perspectives on using Termite in city scaled models

Negendahl, Kristoffer; Nielsen, Toke Rammer

Publication date: 2014

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Termite is a parametric tool using the Danish building performance simulation engine Be10 written for the Grasshopper3D/Rhino3D environment. The tool Be10 is originally intended for building energy frame calculations and is required by Danish law when constructing new buildings. Termite opens up for fully parametric district- and city-size simulations of yearly building energy consumption with the same precision of energy use as the tool simulates on each and every building. The poster demonstrates some of the parametric flexibilities in using Termite e.g. planning for optimal synergistic envelope requirements, placing solar energy production facilities etc.

Termite is able to simulate the dynamics of building energy consumption over the year, which includes thermal transport, natural and mechanical ventilation, cooling and heating systems, heatpumps, solar cells and much more.

Termite is built by Ph.D candidate Kristoffer Negendahl in collaboration with Grontmij Architectural Engineering Denmark in the quest for qualifying sustainable buildings, districts and cities in the early stages of the design process.

Termite provides very detailed toolsets to model and analyze large scale building energy problems. Effects from building-to-building relationships can be defined by custom user-algorithms with Grasshopper while utilizing Termite to provide valid feedback of each building energy production and consumption. Energy reductions/increases can easily be visualized and Termite may be used as an effective tool for energy planning purposes.